Citation: LIU Ran,  PENG Yu-Bo,  HUANG Qing,  YANG Xing,  JIA Yue-Mei,  DU Yan,  JI Jian-Long. Current-Voltage Characteristics of Organic Electrochemical Transistors Considering Effects of Gate Polarization and Adsorbed Charge[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(6): 878-888. doi: 10.19756/j.issn.0253-3820.221015 shu

Current-Voltage Characteristics of Organic Electrochemical Transistors Considering Effects of Gate Polarization and Adsorbed Charge

  • Corresponding author: JIA Yue-Mei,  DU Yan,  JI Jian-Long, 
  • Received Date: 8 January 2022
    Revised Date: 4 April 2022

    Fund Project: Supported by the National Natural Science Foundation of China(No. 52175542), the Natural Science Foundation of Shanxi Province(No. 20210302123136), the Natural Science Foundation of Chongqing(No. cstc2020jcyj-msxmX0002), the Postdoctoral Foundation of China(No. 2020M673646) and the Science and Technology Development Program of Jilin Province Key Research and Development Project(No. 20210204126YY).

  • Organic electrochemical transistors(OECTs) are widely used in biosensing due to their good biocompatibility, low operating voltage, and excellent signal amplification ability. Functionalization of the gate electrode is crucial for OECTs-based biosensing. However, the existing theory cannot describe the influences of polarization and charge adsorption on the current-voltage(I-V) characteristics. In this work, the Bernards-Malliaras I-V characteristic is modified by constructing the series model of differential capacitance formed at gate/electrolyte and semiconductor-channel/electrolyte interfaces. The effectiveness of the modified model is discussed by experimental investigations, including changing the potentiostatic electrodeposition time, regulating the thickness of poly(3,4-ethylenedioxythio-phene):poly(styrenesulfonate) (PEDOT:PSS) film formed on the surface of the gate-electrode(0.80-3.73 μm) and the gate-electrode/electrolyte interface capacitance(CG) (24.01-120.10 μF). Experimental results show that the transconductance peak increases with the CG increments; when the gate electrode voltage(VG) is set as +0.6 V, the current flowing in the semiconductor channel current(IDS,l) increases monotonically with the CG increments; When VG is set as-0.6 V, IDS,l decreases monotonically with the CG increments. In addition, the aptamer probes anchored on the gate-electrode react specifically with different concentrations of adenosine triphosphate(10-12-10-5 mol/L).Experimental results show that IDS,l decreases with the increments of the adenosine triphosphate concentration,and thus, the amount of adsorbed charge. The qualitative theoretical analyses are consistent with the experimental results. The modified theoretical model proposed herein is expected to provide theoretical support for designing of OECTs and OECTs based biosensors.
  • 加载中
    1. [1]

      DONAHUE M J, WILLIAMSON A, STRAKOSAS X, FRIEDLEIN J T, MCLEOD R R, GLESKOVA H, MALLIARAS G G. Adv. Mater., 2018, 30(5):1705031.

    2. [2]

      TANG K, MIAO W J, GUO S. ACS Appl. Polym. Mater., 2021, 3(3):1436-1444.

    3. [3]

      YANG A N, YAN F. ACS Appl. Electron. Mater., 2021, 3(1):53-67.

    4. [4]

      WANG Y, ZHU C X, PFATTNER R, YAN H P, JIN L H, CHEN S C, MOLINA-LOPEZ F, LISSEL F, LIU J, RABIAH N I, CHEN Z, CHUNG J W, LINDER C, TONEY M F, MURMANN B, BAO Z N. Sci. Adv., 2017, 3(3):e1602076.

    5. [5]

      MA C A, LUO H X, LIU M Z, YANG H, LIU H L, ZHANG X Q, JIANG L. Chem. Eng. J., 2021, 425:131542.

    6. [6]

      CHEN S, SURENDRAN A, WU X H, LEE S Y, STEPHEN M, LEONG W L. Adv. Mater. Technol., 2020, 5(12):2000523.

    7. [7]

      LIN P, YAN F. Adv. Mater., 2012, 24(1):34-51.

    8. [8]

      BERNARDS D A, MALLIARAS G G. Adv. Funct. Mater., 2007, 17(17):3538-3544.

    9. [9]

      YU J, YANG A N, WANG N X, LING H F, SONG J J, CHEN X, LIAN Y D, ZHANG Z S, YAN F, GU M.Nanoscale, 2021, 13(5):2868-2874.

    10. [10]

      GALLIANI M, DIACCI C, BERTO M, SENSI M, BENI V, BERGGREN M, BORSARI M, SIMON D T, BISCARINI F, BORTOLOTTI C A. Adv. Mater. Interfaces, 2020, 7(23):2001218.

    11. [11]

      LIN P, LUO X T, HSING I M, YAN F. Adv. Mater., 2011, 23(35):4035-4040.

    12. [12]

      BERNARDS D A, MACAYA D J, NIKOLOU M, DEFRANCO J A, TAKAMATSU S, MALLIARAS G G. J.Mater. Chem., 2008, 18(1):116-120.

    13. [13]

      YAO W, WANG L, WANG H, ZHANG X, LI L. Biosens. Bioelectron., 2009, 24(11):3269-3274.

    14. [14]

      HUIZENGA D E, SZOSTAK J W. Biochemistry, 1995, 34(2):656-665.

    15. [15]

      SESSOLO M, KHODAGHOLY D, RIVNAY J, MADDALENA F, GLEYZES M, STEIDL E, BUISSON B, MALLIARAS G G. Adv. Mater., 2013, 25(15):2135-2139.

    16. [16]

      SHI Y B, ZHOU Y Q, SHEN R Z, LIU F Z, ZHOU Y R. J. Ind. Eng. Chem., 2021, 101:414-422.

    17. [17]

      DU X, WANG Z. Electrochim. Acta, 2003, 48(12):1713-1717.

    18. [18]

      PIGANI L, HERAS A, COLINAÁ, SEEBER R, LóPEZ-PALACIOS J. Electrochem. Commun., 2004, 6(11):1192-1198.

    19. [19]

      SHIBATA T, OHMI T. IEEE Trans. Electron Devices, 1992, 39(6):1444-1455.

    20. [20]

      RIVNAY J, LELEUX P, FERRO M, SESSOLO M, WILLIAMSON A, KOUTSOURAS D A, KHODAGHOLY D, RAMUZ M, STRAKOSAS X, OWENS R M, BENAR C, BADIER J M, BERNARD C, MALLIARAS G G. Sci.Adv., 2015, 1(4):e1400251.

    21. [21]

      INAL S, MALLIARAS G G, RIVNAY J. Nat. Commun., 2017, 8:1767.

    22. [22]

      LIANG Y Y, WU C T, FIGUEROA-MIRANDA G, OFFENHäUSSER A, MAYER D. Biosens. Bioelectron., 2019, 144:111668.

    23. [23]

      ZHOU Z W, ZHANG Q Y, YANG R X, WU H, ZHANG M H, QIAN C G, CHEN X Z, SUN M J. iScience, 2020, 23(2):100872.

  • 加载中
    1. [1]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-0. doi: 10.3866/PKU.WHXB202310046

    2. [2]

      Lin′an CAODengyue MAGang XU . Research advances in electrically conductive metal-organic frameworks-based electrochemical sensors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1953-1972. doi: 10.11862/CJIC.20250160

    3. [3]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    4. [4]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    5. [5]

      Hong Yan Wenfeng Wang Keyin Ye Yaofeng Yuan . Organic Electrochemistry and Its Integration into Chemistry Teaching. University Chemistry, 2025, 40(5): 301-310. doi: 10.12461/PKU.DXHX202407027

    6. [6]

      Mengfei HeChao ChenYue TangSi MengZunfa WangLiyu WangJiabao XingXinyu ZhangJiahui HuangJiangbo LuHongmei JingXiangyu LiuHua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-0. doi: 10.3866/PKU.WHXB202310029

    7. [7]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    8. [8]

      Yun ChenDaijie DengLi XuXingwang ZhuHenan LiChengming Sun . Covalent bond modulation of charge transfer for sensitive heavy metal ion analysis in a self-powered electrochemical sensing platform. Acta Physico-Chimica Sinica, 2026, 42(1): 100144-0. doi: 10.1016/j.actphy.2025.100144

    9. [9]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    10. [10]

      Yan XinYunnian GeZezhong LiQiaobao ZhangHuajun Tian . Research Progress on Modification Strategies of Organic Electrode Materials for Energy Storage Batteries. Acta Physico-Chimica Sinica, 2024, 40(2): 2303060-0. doi: 10.3866/PKU.WHXB202303060

    11. [11]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    12. [12]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    13. [13]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    14. [14]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    15. [15]

      Ke ZhaoZhen LiuLuyao LiuChangyuan YuJingshun PanXuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029

    16. [16]

      Ping YeLingshuang QinMengyao HeFangfang WuZengye ChenMingxing LiangLibo Deng . Potential of Zero Charge-Mediated Electrochemical Capture of Cadmium Ions from Wastewater by Lotus Leaf-Derived Porous Carbons. Acta Physico-Chimica Sinica, 2025, 41(3): 100023-0. doi: 10.3866/PKU.WHXB202311032

    17. [17]

      Xingchao ZhaoXiaoming LiMing LiuZijin ZhaoKaixuan YangPengtian LiuHaolan ZhangJintai LiXiaoling MaQi YaoYanming SunFujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021

    18. [18]

      Feng Lin Zhongxin Jin Caiying Li Cheng Shao Yang Xu Fangze Li Siqi Liu Ruining Gu . Preparation and Electrochemical Properties of Nickel Foam-Supported Ni(OH)2-NiMoO4 Electrode Material. University Chemistry, 2025, 40(10): 225-232. doi: 10.12461/PKU.DXHX202412017

    19. [19]

      Qianwen HanTenglong ZhuQiuqiu LüMahong YuQin Zhong . Performance and Electrochemical Asymmetry Optimization of Hydrogen Electrode Supported Reversible Solid Oxide Cell. Acta Physico-Chimica Sinica, 2025, 41(1): 100005-0. doi: 10.3866/PKU.WHXB202309037

    20. [20]

      Renxiu Zhang Xin Zhao Yunfei Zhang . Application of Electrochemical Synthesis in the Teaching of Organic Chemistry. University Chemistry, 2025, 40(4): 174-180. doi: 10.12461/PKU.DXHX202406116

Metrics
  • PDF Downloads(16)
  • Abstract views(1253)
  • HTML views(332)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return