Citation: WEI Jia,  WANG Yao-Qi,  WANG Zhen-Xin,  MENG Xian-Ying. Highly Sensitive Detection of PTENR130* Mutation in Thyroid Cancer Based on Amplification Refractory Mutation System-Real Time Fluorescence-Quantitative Polymerase Chain Reaction[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(5): 701-710. doi: 10.19756/j.issn.0253-3820.221008 shu

Highly Sensitive Detection of PTENR130* Mutation in Thyroid Cancer Based on Amplification Refractory Mutation System-Real Time Fluorescence-Quantitative Polymerase Chain Reaction

  • Corresponding author: WANG Zhen-Xin,  MENG Xian-Ying, 
  • Received Date: 4 January 2022
    Revised Date: 18 February 2022

    Fund Project: Supported by the Science and Technology Development Project of Jilin Province, China (No.20210204049YY) and the Shandong Taishan Industry Leading Talent Project, China (No.2019TSCYCX-24).

  • An analytical method based on amplification refractory mutation system-real time fluorescence-quantitative polymerase chain reaction (ARMS-qPCR) was developed for detection of gene mutation PTENR130* mutation in thyroid cancer. Allele-specific and reference primers for the PTENR130* mutation were designed for allele-specific and reference amplification of each sample at the same time, and the ΔCt value was obtained by Ct-allele-specific value minus Ct-reference value to analyze the variant allele frequency (VAF). The ARMS-qPCR method could detect VAF as low as 0.01%, with a linear range of 0.1% to 90% VAF, and could identify PTEN mutations in genomic DNA as low as 4 copies. This method successfully detected 5 cases of mutation with VAF>0.1% in 24 thyroid tumor samples. In addition, the ARMS-qPCR method also showed good detection performance for PTENR130* mutant spiked plasma samples under the electrochemical enrichment, indicating clinical practicability and the potential to detect trace PTENR130* mutation in complex samples.
  • 加载中
    1. [1]

      STAMBOLIC V, SUZUKI A, DE LA POMPA J L, BROTHERS G M, MIRTSOS C, SASAKI T, RULAND J, PENNINGER J M, SIDEROVSKI D P, MAK T W. Cell, 1998, 95(1):29-39.

    2. [2]

      DELGOFFE G M, KOLE T P, ZHENG Y, ZAREK P E, MATTHEWS K L, XIAO B, WORLEY P F, KOZMA S C, POWELL J D. Immunity, 2009, 30(6):832-844.

    3. [3]

      CALDERON L, SCHINDLER K, MALIN S G, SCHEBESTA A, SUN Q, SCHWICKERT T, ALBERTI C, FISCHER M, JARITZ M, TAGOH H, EBERT A, MINNICH M, LISTON A, COCHELLA L, BUSSLINGER M. Sci. Immunol., 2021, 6(61):e5003.

    4. [4]

      YANG M, SCHIAPPARELLI P, NGUYEN H N, IGARASHI A, ZHANG Q, ABBADI S, AMZEL L M, SESAKI H, QUINONES-HINOJOSA A, IIJIMA M. Oncogene, 2017, 36(26):3673-3685.

    5. [5]

      XU W, ZHANG M J, LI Y, WANG Y, WANG K, CHEN Q Y, ZHANG R J, SONG W W, HUANG Q Q, ZHAO W H, WU J Q. Cancer Cell Int., 2021, 21(1):30.

    6. [6]

      LI L H, YUE P L, SONG Q Q, YEN T T, ASAKA S, WANG T L, BEAVIS A L, FADER A N, JIAO Y C, YUAN G W, SHIH I M, SONG Y. J. Pathol., 2021, 253(1):119-128.

    7. [7]

      FAGIN J A, WELLS S A. N. Engl. J. Med., 2016, 375(11):1054-1067.

    8. [8]

      DAHIA P L, MARSH D J, ZHENG Z, ZEDENIUS J, KOMMINOTH P, FRISK T, WALLIN G, PARSONS R, LONGY M, LARSSON C, ENG C. Cancer Res., 1997, 57(21):4710-4713.

    9. [9]

      LANDA I, POZDEYEV N, KORCH C, MARLOW L A, SMALLRIDGE R C, COPLAND J A, HENDERSON Y C, LAI S Y, CLAYMAN G L, ONODA N, TAN A C, GARCIA-RENDUELES M E R, KNAUF J A, HAUGEN B R, FAGIN J A, SCHWEPPE R E. Clin. Cancer Res., 2019, 25(10):3141-3151.

    10. [10]

      DAVIES L, HOANG J K. Lancet Diabetes Endocrinol., 2021, 9(1):11-12.

    11. [11]

      MIRANDA-FILHO A, LORTET-TIEULENT J, BRAY F, CAO B, FRANCESCHI S, VACCARELLA S, DAL MASO L. Lancet Diabetes Endocrinol., 2021, 9(4):225-234.

    12. [12]

      FAN D, MA J, BELL A C, GROEN A H, OLSEN K S, LOK B H, LEEMAN J E, ANDERSON E, RIAZ N, MCBRIDE S, GANLY I, SHAHA A R, SHERMAN E J, TSAI C J, KANG J J, LEE N Y. Cancer, 2020, 126(2):444-452.

    13. [13]

      DURANTE C, GRANI G, LAMARTINA L, FILETTI S, MANDEL S J, COOPER D S. JAMA, J. Am. Med. Assoc., 2018, 319(9):914-924.

    14. [14]

      LIU M, RUAN M, CHEN L. Med. Oncol., 2014, 31(6):973.

    15. [15]

    16. [16]

      HUBER F, LANG H P, GLATZ K, RIMOLDI D, MEYER E, GERBER C. Nano Lett., 2016, 16(9):5373-5377.

    17. [17]

      LI P, HE H, WANG Z, FENG M, JIN H, WU Y, ZHANG L, ZHANG L, TANG X. Anal. Chem., 2016, 88(1):883-889.

    18. [18]

      TU M, CHIA D, WEI F, WONG D. Analyst, 2016, 141(2):393-402.

    19. [19]

      ZAPPE K, PIRKER C, MIEDL H, SCHREIBER M, HEFFETER P, PFEILER G, HACKER S, HASLIK W, SPIEGL-KREINECKER S, CICHNA-MARKL M. Int. J. Mol. Sci., 2021, 22(22):12527.

    20. [20]

      DU Y, POTHUKUCHY A, GOLLIHAR J D, NOURANI A, LI B, ELLINGTON A D. Angew. Chem., Int. Ed., 2017, 56(4):992-996

    21. [21]

      WANG Y, TIAN K, SHI R, GU A, PENNELLA M, ALBERTS L, GATES K S, LI G, FAN H, WANG M X, GU L Q. ACS Sens., 2017, 2(7):975-981

    22. [22]

      CHEN D, QI W, ZHANG P, ZHANG Y, LIU Y, GUAN H, WANG L. Pathology, 2018, 214(2):303-307

    23. [23]

      MUKHERJEE S, SATHANOORI M, MA Z, ANDREATTA M, LENNON P A, WHEELER S R, PRESCOTT J L, COLDREN C, CASEY T, RIETZ H, FASIG K, WOODFORD R, HARTLEY T, SPENCE D, DONNELAN W, BERDEJA J, FLINN I, KOZYR N, BOUZYK M, CORRELL M, HO H, KRAVTSOV V, TUNNEL D, CHANDRA P. Canc. Genet., 2017, 216:128-141

    24. [24]

      EMAUS M N, ANDERSON J L. Anal. Chim. Acta, 2020, 1124:184-193.

    25. [25]

      BOTEZATU I V, KONDRATOVA V N, SHELEPOV V P, MAZURENKO N N, TSYGANOVA I V, SUSOVA O Y, LICHTENSTEIN A V. Anal. Biochem., 2020, 590:113517.

    26. [26]

      NAKAMURA Y, TANIGUCHI H, IKEDA M, BANDO H, KATO K, MORIZANE C, ESAKI T, KOMATSU Y, KAWAMOTO Y, TAKAHASHI N, UENO M, KAGAWA Y, NISHINA T, KATO T, YAMAMOTO Y, FURUSE J, DENDA T, KAWAKAMI H, OKI E, NAKAJIMA T, NISHIDA N, YAMAGUCHI K, YASUI H, GOTO M, MATSUHASHI N, OHTSUBO K, YAMAZAKI K, TSUJI A, OKAMOTO W, TSUCHIHARA K, YAMANAKA T, MIKI I, SAKAMOTO Y, ICHIKI H, HATA M, YAMASHITA R, OHTSU A, ODEGAARD J I, YOSHINO T. Nat. Med., 2020, 26(12):1859-1864.

    27. [27]

      LEBOFSKY R, DECRAENE C, BERNARD V, KAMAL M, BLIN A, LEROY Q, RIO FRIO T, PIERRON G, CALLENS C, BIECHE I, SALIOU A, MADIC J, ROULEAU E, BIDARD F C, LANTZ O, STERN M H, LE TOURNEAU C, PIERGA J Y. Mol. Oncol., 2015, 9(4):783-790.

    28. [28]

      NEWTON C R, GRAHAM A, HEPTINSTALL L E, POWELL S J, SUMMERS C, KALSHEKER N, SMITH J C, MARKHAM A F. Nucleic Acids Res., 1989, 17(7):2503-2516.

    29. [29]

      YU P C, TAN L C, ZHU X L, SHI X, CHERNIKOV R, SEMENOV A, ZHANG L, MA B, WANG Y, ZHOU X Y, JI Q H, WEI W J, WANG Y L. Endocr. Pract., 2021, 27(7):698-705.

    30. [30]

      XU S, DUAN Y, LOU L, TANG F, SHOU J, WANG G. Oncol. Lett., 2016, 12(5):4238-4244.

    31. [31]

      WEI J, ZHAO Z, GAO J X, WANG Y Q, MA L N, MENG X Y, WANG Z X. ACS Omega, 2020, 5(10):5365-5371.

    32. [32]

      KOMIJANI M, SHAHIN K, AZHAR E I, BAHRAM M. Methods Mol. Biol., 2022, 2392:93-99.

    33. [33]

      BRADLEY K M, ELMORE J B, BREYER J P, YASPAN B L, JESSEN J R, KNAPIK E W, SMITH J R. Genome Biol., 2007, 8(4):R55.

    34. [34]

      BUTCHER L M, MEABURN E, LIU L, FERNANDES C, HILL L, AL-CHALABI A, PLOMIN R, SCHALKWYK L, CRAIG I W. Behav. Genet., 2004, 34(5):549-555.

  • 加载中
    1. [1]

      Ying Zhang Fang Ge Zhimin Luo . AI-Driven Biochemical Teaching Research: Predicting the Functional Effects of Gene Mutations. University Chemistry, 2025, 40(3): 277-284. doi: 10.12461/PKU.DXHX202412104

    2. [2]

      Lin LIJiaxue LIMeixia YANGJiayu DINGJiaqi JINGRuiping ZHANG . Preparation of mitoxantrone self-assembled carrier-free nanodrugs regulated by sodium acetate for apoptosis induction of human breast carcinoma cells. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2536-2548. doi: 10.11862/CJIC.20250138

    3. [3]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    4. [4]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    5. [5]

      Mi Wen Baoshuo Jia Yongqi Chai Tong Wang Jianbo Liu Hailong Wu . Improvement of Fluorescence Quantitative Analysis Experiment: Simultaneous Determination of Rhodamine 6G and Rhodamine 123 in Food Using Chemometrics-Assisted Three-Dimensional Fluorescence Method. University Chemistry, 2025, 40(4): 390-398. doi: 10.12461/PKU.DXHX202405147

    6. [6]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    7. [7]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    8. [8]

      Xudong LvTao ShaoJunyan LiuMeng YeShengwei Liu . Paired Electrochemical CO2 Reduction and HCHO Oxidation for the Cost-Effective Production of Value-Added Chemicals. Acta Physico-Chimica Sinica, 2024, 40(5): 2305028-0. doi: 10.3866/PKU.WHXB202305028

    9. [9]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

    10. [10]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

    11. [11]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    12. [12]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    13. [13]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    14. [14]

      Xue-Peng Zhang Yuchi Long Yushu Pan Jiding Wang Baoyu Bai Rui Ding . 定量构效关系方法学习探索:以钴卟啉活化氧气为例. University Chemistry, 2025, 40(8): 345-359. doi: 10.12461/PKU.DXHX202410107

    15. [15]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    16. [16]

      Jian LiYu ZhangRongrong YanKaiyuan SunXiaoqing LiuZishang LiangYinan JiaoHui BuXin ChenJinjin ZhaoJianlin Shi . Highly Efficient, Targeted, and Traceable Perovskite Nanocrystals for Photoelectrocatalytic Oncotherapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-0. doi: 10.1016/j.actphy.2024.100042

    17. [17]

      Xiaoli Sun Xiang Wu Li Gan Wenming Wan . Barbier Polymerization: A New Teaching Case for Step-Growth Polymerization. University Chemistry, 2025, 40(4): 113-118. doi: 10.12461/PKU.DXHX202406102

    18. [18]

      Yerong Chen Bingbin Yang Xinglei He Yuqi Lin Keyin Ye . Enzyme-Directed Evolution Enables Bioconversion of Organosilicon Compounds. University Chemistry, 2025, 40(10): 121-129. doi: 10.12461/PKU.DXHX202411054

    19. [19]

      Ling Bai Limin Lu Xiaoqiang Wang Dongping Wu Yansha Gao . Exploration and Practice of Teaching Reforms in “Quantitative Analytical Chemistry” under the Perspective of New Agricultural Science. University Chemistry, 2024, 39(3): 158-166. doi: 10.3866/PKU.DXHX202308101

    20. [20]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

Metrics
  • PDF Downloads(7)
  • Abstract views(639)
  • HTML views(34)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return