微量蛋白质组学样品预处理方法的研究进展

郑敏阳 陆刚 李洋 张振宾 赵玉芬

引用本文: 郑敏阳, 陆刚, 李洋, 张振宾, 赵玉芬. 微量蛋白质组学样品预处理方法的研究进展[J]. 分析化学, 2022, 50(9): 1279-1288. doi: 10.19756/j.issn.0253-3820.221004 shu
Citation:  ZHENG Min-Yang,  LU Gang,  LI Yang,  ZHANG Zhen-Bin,  ZHAO Yu-Fen. Recent Development in Mass-limited Sample Preparation Methods for Proteomics[J]. Chinese Journal of Analytical Chemistry, 2022, 50(9): 1279-1288. doi: 10.19756/j.issn.0253-3820.221004 shu

微量蛋白质组学样品预处理方法的研究进展

    通讯作者: 张振宾,E-mail:zhangzhenbin@nbu.edu.cn; 赵玉芬,E-mail:zhaoyufen@nbu.edu.cn
  • 基金项目:

    宁波大学科研经费项目(No.215-432000282)、宁波市顶尖人才项目(No.215-432094250)和宁波大学王宽诚幸福基金项目资助。

摘要: 样品预处理方法对蛋白质组学分析方法的灵敏度和定量分析的准确性具有重要影响,在微量蛋白质组学样品分析中尤为重要。传统的蛋白质组样品预处理方法,如溶液内酶解法和滤膜辅助样品处理(FASP)方法等,处理样品时样品量损失较大,需要大量的起始样品(>20 μg)才能获得比较满意的蛋白质覆盖率,不适用于同一细胞亚型的少量细胞样品、临床穿刺样品以及单细胞等微量样品(<1 μg)的定性与定量分析。为了解决该问题,亟需发展针对亚微克甚至纳克级起始样品的蛋白质组学样品预处理方法。本文综述了固相萃取头法(In-stagetip)、固相增强一锅法(Single-pot solid-phase-enhanced sample preparation,SP3)、集成化的蛋白质组分析装置法(Integrated proteome analysis device,iPAD)、基于spintip的简单集成的蛋白质组学分析技术(Simple and integrated spintip-based proteomics technology,SISPROT)、全自动化样品处理(Fully automated sample treatment,FAST)和微型滤膜辅助法(Miniaturized filter-aided sample preparation,MICROFASP)等基于不同机理的微量蛋白质组学样品预处理方法的研究进展,并对其发展趋势进行了展望。

English


    1. [1]

      ASLAM B, BASIT M, NISAR M A, KHURSHID M, RASOOL M H. J. Chromatogr. Sci., 2017, 55(2):182-196.ASLAM B, BASIT M, NISAR M A, KHURSHID M, RASOOL M H. J. Chromatogr. Sci., 2017, 55(2):182-196.

    2. [2]

      WISNIEWSKI J R, ZOUGMAN A, NAGARAJ N, MANN M. Nat. Methods, 2009, 6(5):359-362.WISNIEWSKI J R, ZOUGMAN A, NAGARAJ N, MANN M. Nat. Methods, 2009, 6(5):359-362.

    3. [3]

      LIEBLER D C, HAM A J. Nat. Methods, 2009, 6(11):785.LIEBLER D C, HAM A J. Nat. Methods, 2009, 6(11):785.

    4. [4]

      ERDE J, LOO R R, LOO J A. J. Proteome Res., 2014, 13(4):1885-1895.ERDE J, LOO R R, LOO J A. J. Proteome Res., 2014, 13(4):1885-1895.

    5. [5]

      ZHAO Q, FANG F, WU C, WU Q, LIANG Y, LIANG Z, ZHANG L H, ZHANG Y K. Anal. Chim. Acta, 2016, 912:58-64.ZHAO Q, FANG F, WU C, WU Q, LIANG Y, LIANG Z, ZHANG L H, ZHANG Y K. Anal. Chim. Acta, 2016, 912:58-64.

    6. [6]

      NDIAYE M M, TA H P, CHIAPPETTA G, VINH J. J. Proteome Res., 2020, 19(7):2654-2663.NDIAYE M M, TA H P, CHIAPPETTA G, VINH J. J. Proteome Res., 2020, 19(7):2654-2663.

    7. [7]

      ZHANG Z B, DUBIAK K M, HUBER P W, DOVICHI N J. Anal. Chem., 2020, 92(7):5554-5560.ZHANG Z B, DUBIAK K M, HUBER P W, DOVICHI N J. Anal. Chem., 2020, 92(7):5554-5560.

    8. [8]

      ZHANG Z B, DUBIAK K M, SHISHKOVA E, HUBER P W, COON J J, DOVICHI N J. Anal. Chem., 2022, 94(7):3254-3259.ZHANG Z B, DUBIAK K M, SHISHKOVA E, HUBER P W, COON J J, DOVICHI N J. Anal. Chem., 2022, 94(7):3254-3259.

    9. [9]

      WANG N, XU M G, WANG P, LI L. Anal. Chem., 2010, 82(6):2262-2271.WANG N, XU M G, WANG P, LI L. Anal. Chem., 2010, 82(6):2262-2271.

    10. [10]

      KULAK N A, PICHLER G, PARON I, NAGARAJ N, MANN M. Nat. Methods, 2014, 11(3):319-324.KULAK N A, PICHLER G, PARON I, NAGARAJ N, MANN M. Nat. Methods, 2014, 11(3):319-324.

    11. [11]

      GEYER P E, HOLDT L M, TEUPSER D, MANN M. Mol. Syst. Biol., 2017, 13(9):942.GEYER P E, HOLDT L M, TEUPSER D, MANN M. Mol. Syst. Biol., 2017, 13(9):942.

    12. [12]

      KOSTAS J C, GREGUS M, SCHEJBAL J, RAY S, IVANOV A R. J. Proteome Res., 2021, 20(3):1676-1688.KOSTAS J C, GREGUS M, SCHEJBAL J, RAY S, IVANOV A R. J. Proteome Res., 2021, 20(3):1676-1688.

    13. [13]

      CHEN Q, YAN G Q, GAO M X, ZHANG X M. Anal. Chem., 2015, 87(13):6674-6680.CHEN Q, YAN G Q, GAO M X, ZHANG X M. Anal. Chem., 2015, 87(13):6674-6680.

    14. [14]

      CHEN Q, YAN G Q, GAO M X, ZHANG X M. Anal.Bioanal. Chem., 2015, 407(3):1027-1032.CHEN Q, YAN G Q, GAO M X, ZHANG X M. Anal.Bioanal. Chem., 2015, 407(3):1027-1032.

    15. [15]

      MILLER A J, YU Q H, CZERWINSKI M, TSAI Y H, CONWAY R F, WU A, HOLLOWAY E M, WALKER T, GLASS I A, TREUTLEIN B, CAMP J G, SPENCE J R. Dev. Cell, 2020, 53(1):117-128.MILLER A J, YU Q H, CZERWINSKI M, TSAI Y H, CONWAY R F, WU A, HOLLOWAY E M, WALKER T, GLASS I A, TREUTLEIN B, CAMP J G, SPENCE J R. Dev. Cell, 2020, 53(1):117-128.

    16. [16]

      BUETTNER F, NATARAJAN K N, CASALE F P, PROSERPIO V, SCIALDONE A, THEIS F J, TEICHMANN S A, MARIONI J C, STEGIE O. Nat. Biotechnol., 2015, 33(2):155-160.BUETTNER F, NATARAJAN K N, CASALE F P, PROSERPIO V, SCIALDONE A, THEIS F J, TEICHMANN S A, MARIONI J C, STEGIE O. Nat. Biotechnol., 2015, 33(2):155-160.

    17. [17]

      DOERR A. Nat. Methods, 2019, 16(1):20.DOERR A. Nat. Methods, 2019, 16(1):20.

    18. [18]

      SHAO X, WANG X T, GUAN S, LIN H Z, YAN G Q, GAO M X, DENG C H, ZHANG X M. Anal. Chem., 2018, 90(23):14003-14010.SHAO X, WANG X T, GUAN S, LIN H Z, YAN G Q, GAO M X, DENG C H, ZHANG X M. Anal. Chem., 2018, 90(23):14003-14010.

    19. [19]

      LI Z Y, HUANG M, WANG X K, ZHU Y, LI J S, WONG C C L, FANG Q. Anal. Chem., 2018, 90(8):5430-5438.LI Z Y, HUANG M, WANG X K, ZHU Y, LI J S, WONG C C L, FANG Q. Anal. Chem., 2018, 90(8):5430-5438.

    20. [20]

      ZHU Y, PIEHOWSKI P D, ZHAO R, CHEN J, SHEN Y F, MOORE R J, SHUKLA A K, PETYUK V A, CAMPBELL-THOMPSON M, MATHEWS C E, SMITH R D, QIAN W J, KELLY R T. Nat. Commun., 2018, 9:882.ZHU Y, PIEHOWSKI P D, ZHAO R, CHEN J, SHEN Y F, MOORE R J, SHUKLA A K, PETYUK V A, CAMPBELL-THOMPSON M, MATHEWS C E, SMITH R D, QIAN W J, KELLY R T. Nat. Commun., 2018, 9:882.

    21. [21]

      XU K R, LIANG Y R, PIEHOWSKI P D, DOU M W, SCHWARZ K C, ZHAO R, SONTAG R L, MOORE R J, ZHU Y, KELLY R T. Anal. Bioanal. Chem., 2019, 411(19):4587-4596.XU K R, LIANG Y R, PIEHOWSKI P D, DOU M W, SCHWARZ K C, ZHAO R, SONTAG R L, MOORE R J, ZHU Y, KELLY R T. Anal. Bioanal. Chem., 2019, 411(19):4587-4596.

    22. [22]

      ROSEVEAR P, VANAKEN T, BAXTER J, FERGUSON-MILLER S. Biochemistry, 1980, 19(17):4108-4115.ROSEVEAR P, VANAKEN T, BAXTER J, FERGUSON-MILLER S. Biochemistry, 1980, 19(17):4108-4115.

    23. [23]

      ETHIER M, HOU W M, DUEWEL H S, FIGEYS D. J. Proteome Res., 2006, 5(10):2754-2759.ETHIER M, HOU W M, DUEWEL H S, FIGEYS D. J. Proteome Res., 2006, 5(10):2754-2759.

    24. [24]

      TIAN R J, WANG S A, ELISMA F, LI L, ZHOU H, WANG L S, FIGEYS D. Mol. Cell. Proteomics, 2011, 10(2):M110.000679.TIAN R J, WANG S A, ELISMA F, LI L, ZHOU H, WANG L S, FIGEYS D. Mol. Cell. Proteomics, 2011, 10(2):M110.000679.

    25. [25]

      ZHANG Z B, WANG F J, XU B, QIN H Q, YE M L, ZOU H F. J. Chromatogr. A, 2012, 1256:136-143.ZHANG Z B, WANG F J, XU B, QIN H Q, YE M L, ZOU H F. J. Chromatogr. A, 2012, 1256:136-143.

    26. [26]

      YANG Yun, TIAN Rui-Jun. Chin. J. Chromatogr., 2020, 38(10):1125-1132. 杨云, 田瑞军. 色谱, 2020, 38(10):1125-1132.

    27. [27]

      ZHANG Z B, SUN L L, ZHU G J, COX O F, HUBER P W, DOVICHI N J. Anal. Chem., 2016, 88(1):877-882.ZHANG Z B, SUN L L, ZHU G J, COX O F, HUBER P W, DOVICHI N J. Anal. Chem., 2016, 88(1):877-882.

    28. [28]

      ZHAO Q, LIANG Y, YUAN H M, SUI Z G, WU Q, LIANG Z, ZHANG L H, ZHANG Y K. Anal. Chem., 2013, 85(18):8507-8512.ZHAO Q, LIANG Y, YUAN H M, SUI Z G, WU Q, LIANG Z, ZHANG L H, ZHANG Y K. Anal. Chem., 2013, 85(18):8507-8512.

    29. [29]

      HUGHES C S, FOEHR S, GARFIELD D A, FURLONG E E, STEINMETZ L M, KRIJGSVELD J. Mol. Syst. Biol., 2014, 10(10):757.HUGHES C S, FOEHR S, GARFIELD D A, FURLONG E E, STEINMETZ L M, KRIJGSVELD J. Mol. Syst. Biol., 2014, 10(10):757.

    30. [30]

      HUGHES C S, MOGGRIDGE S, MULLER T, SORENSEN P H, MORIN G B, KRIJGSVELD J. Nat. Protoc., 2019, 14(1):68-85.HUGHES C S, MOGGRIDGE S, MULLER T, SORENSEN P H, MORIN G B, KRIJGSVELD J. Nat. Protoc., 2019, 14(1):68-85.

    31. [31]

      MULLER T, KALXDORF M, LONGUESPEE R, KAZDAL D N, STENZINGER A, KRIJGSVELD J. Mol. Syst. Biol., 2020, 16(1):e9111.MULLER T, KALXDORF M, LONGUESPEE R, KAZDAL D N, STENZINGER A, KRIJGSVELD J. Mol. Syst. Biol., 2020, 16(1):e9111.

    32. [32]

      YANG Z C, ZHANG Z R, CHEN D Y, XU T, WANG Y, SUN L L. Anal. Chem., 2021, 93(30):10568-10576.YANG Z C, ZHANG Z R, CHEN D Y, XU T, WANG Y, SUN L L. Anal. Chem., 2021, 93(30):10568-10576.

    33. [33]

      HATA K, IZUMI Y, HARA T, MATSUMOTO M, BAMBA T. Anal. Chem., 2020, 92(4):2997-3005.HATA K, IZUMI Y, HARA T, MATSUMOTO M, BAMBA T. Anal. Chem., 2020, 92(4):2997-3005.

    34. [34]

      CHEN W D, WANG S, ADHIKARI S, DENG Z H, WANG L J, CHEN L, KE M, YANG P Y, TIAN R J. Anal. Chem., 2016, 88(9):4864-4871.CHEN W D, WANG S, ADHIKARI S, DENG Z H, WANG L J, CHEN L, KE M, YANG P Y, TIAN R J. Anal. Chem., 2016, 88(9):4864-4871.

    35. [35]

      CHEN W D, ADHIKARI S, CHEN L, LIN L, LI H, LUO S S, YANG P Y, TIAN R J. J. Chromatogr. A, 2017, 1498:207-214.CHEN W D, ADHIKARI S, CHEN L, LIN L, LI H, LUO S S, YANG P Y, TIAN R J. J. Chromatogr. A, 2017, 1498:207-214.

    36. [36]

      SUN Xiu-Jie, TANG Jun, CHEN Wen-Dong, KE Mi, HU Chao-Feng, XU Rui-Lian, TIAN Rui-Jun. Scientia Sinica Vitae, 2018, 48(2):188-194. 孙秀杰, 唐君, 陈文东, 柯弥, 胡巢凤, 许瑞莲, 田瑞军. 中国科学:生命科学, 2018, 48(2):188-194.

    37. [37]

      ZOUGMAN A, SELBY P J, BANKS R E. Proteomics, 2014, 14(9):1006-1010.ZOUGMAN A, SELBY P J, BANKS R E. Proteomics, 2014, 14(9):1006-1010.

    38. [38]

      YUAN H M, DAI Z P, ZHANG X D, ZHAO B F, CHU H W, ZHANG L H, ZHANG Y K. Sci. China:Chem., 2021, 64(2):313-321.YUAN H M, DAI Z P, ZHANG X D, ZHAO B F, CHU H W, ZHANG L H, ZHANG Y K. Sci. China:Chem., 2021, 64(2):313-321.

    39. [39]

      YANG J S, QIAO J, KIM J Y, ZHAO L P, QI L, MOON M H. Anal. Chem., 2018, 90(5):3124-3131.YANG J S, QIAO J, KIM J Y, ZHAO L P, QI L, MOON M H. Anal. Chem., 2018, 90(5):3124-3131.

    40. [40]

      LU X, WANG Z K, GAO Y, CHEN W D, WANG L J, HUANG P W, GAO W N, KE M, HE A, TIAN R J. Anal. Chem., 2020, 92(13):8893-8900.LU X, WANG Z K, GAO Y, CHEN W D, WANG L J, HUANG P W, GAO W N, KE M, HE A, TIAN R J. Anal. Chem., 2020, 92(13):8893-8900.

  • 加载中
计量
  • PDF下载量:  8
  • 文章访问数:  385
  • HTML全文浏览量:  33
文章相关
  • 收稿日期:  2022-01-03
  • 修回日期:  2022-05-25
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章