Citation: ZHENG Min-Yang,  LU Gang,  LI Yang,  ZHANG Zhen-Bin,  ZHAO Yu-Fen. Recent Development in Mass-limited Sample Preparation Methods for Proteomics[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(9): 1279-1288. doi: 10.19756/j.issn.0253-3820.221004 shu

Recent Development in Mass-limited Sample Preparation Methods for Proteomics

  • Corresponding author: ZHANG Zhen-Bin,  ZHAO Yu-Fen, 
  • Received Date: 3 January 2022
    Revised Date: 25 May 2022

    Fund Project: Supported by the Research Funding of Ningbo University (No.215-432000282), the Ningbo Top Talent Project (No.215-432094250) and the K.C. Wong Magna Fund in Ningbo University.

  • Sample preparation methods determine the sensitivity and quantitative accuracy of proteomics analysis, especially for mass-limited proteomics sample. Traditional preparation methods of proteomic sample, such as in-solution digestion and filter aided sample preparation (FASP) method, generally require large amount of starting materials due to the significant sample loss, and thus is not suitable for the qualitative and quantitative analysis of mass-limited samples, such as small number of subcellular cells, biopsy samples, single cells, et al. To overcome this problem, it is urgent to develop sample preparation methods for microgram or even nanogram of starting materials. This paper reviewed various mass-limited sample preparation methods that based on different mechanisms, such as in-StageTip, single-pot solid-phase-enhanced sample preparation (SP3), integrated proteome analysis device (iPAD), simple and integrated spintip-based proteomics technology (SISPROT), fully automated sample treatment (FAST), miniaturized filter-aided sample preparation (MICROFASP) and so on. The development trends in the future were also envisioned.
  • 加载中
    1. [1]

      ASLAM B, BASIT M, NISAR M A, KHURSHID M, RASOOL M H. J. Chromatogr. Sci., 2017, 55(2):182-196.

    2. [2]

      WISNIEWSKI J R, ZOUGMAN A, NAGARAJ N, MANN M. Nat. Methods, 2009, 6(5):359-362.

    3. [3]

      LIEBLER D C, HAM A J. Nat. Methods, 2009, 6(11):785.

    4. [4]

      ERDE J, LOO R R, LOO J A. J. Proteome Res., 2014, 13(4):1885-1895.

    5. [5]

      ZHAO Q, FANG F, WU C, WU Q, LIANG Y, LIANG Z, ZHANG L H, ZHANG Y K. Anal. Chim. Acta, 2016, 912:58-64.

    6. [6]

      NDIAYE M M, TA H P, CHIAPPETTA G, VINH J. J. Proteome Res., 2020, 19(7):2654-2663.

    7. [7]

      ZHANG Z B, DUBIAK K M, HUBER P W, DOVICHI N J. Anal. Chem., 2020, 92(7):5554-5560.

    8. [8]

      ZHANG Z B, DUBIAK K M, SHISHKOVA E, HUBER P W, COON J J, DOVICHI N J. Anal. Chem., 2022, 94(7):3254-3259.

    9. [9]

      WANG N, XU M G, WANG P, LI L. Anal. Chem., 2010, 82(6):2262-2271.

    10. [10]

      KULAK N A, PICHLER G, PARON I, NAGARAJ N, MANN M. Nat. Methods, 2014, 11(3):319-324.

    11. [11]

      GEYER P E, HOLDT L M, TEUPSER D, MANN M. Mol. Syst. Biol., 2017, 13(9):942.

    12. [12]

      KOSTAS J C, GREGUS M, SCHEJBAL J, RAY S, IVANOV A R. J. Proteome Res., 2021, 20(3):1676-1688.

    13. [13]

      CHEN Q, YAN G Q, GAO M X, ZHANG X M. Anal. Chem., 2015, 87(13):6674-6680.

    14. [14]

      CHEN Q, YAN G Q, GAO M X, ZHANG X M. Anal.Bioanal. Chem., 2015, 407(3):1027-1032.

    15. [15]

      MILLER A J, YU Q H, CZERWINSKI M, TSAI Y H, CONWAY R F, WU A, HOLLOWAY E M, WALKER T, GLASS I A, TREUTLEIN B, CAMP J G, SPENCE J R. Dev. Cell, 2020, 53(1):117-128.

    16. [16]

      BUETTNER F, NATARAJAN K N, CASALE F P, PROSERPIO V, SCIALDONE A, THEIS F J, TEICHMANN S A, MARIONI J C, STEGIE O. Nat. Biotechnol., 2015, 33(2):155-160.

    17. [17]

      DOERR A. Nat. Methods, 2019, 16(1):20.

    18. [18]

      SHAO X, WANG X T, GUAN S, LIN H Z, YAN G Q, GAO M X, DENG C H, ZHANG X M. Anal. Chem., 2018, 90(23):14003-14010.

    19. [19]

      LI Z Y, HUANG M, WANG X K, ZHU Y, LI J S, WONG C C L, FANG Q. Anal. Chem., 2018, 90(8):5430-5438.

    20. [20]

      ZHU Y, PIEHOWSKI P D, ZHAO R, CHEN J, SHEN Y F, MOORE R J, SHUKLA A K, PETYUK V A, CAMPBELL-THOMPSON M, MATHEWS C E, SMITH R D, QIAN W J, KELLY R T. Nat. Commun., 2018, 9:882.

    21. [21]

      XU K R, LIANG Y R, PIEHOWSKI P D, DOU M W, SCHWARZ K C, ZHAO R, SONTAG R L, MOORE R J, ZHU Y, KELLY R T. Anal. Bioanal. Chem., 2019, 411(19):4587-4596.

    22. [22]

      ROSEVEAR P, VANAKEN T, BAXTER J, FERGUSON-MILLER S. Biochemistry, 1980, 19(17):4108-4115.

    23. [23]

      ETHIER M, HOU W M, DUEWEL H S, FIGEYS D. J. Proteome Res., 2006, 5(10):2754-2759.

    24. [24]

      TIAN R J, WANG S A, ELISMA F, LI L, ZHOU H, WANG L S, FIGEYS D. Mol. Cell. Proteomics, 2011, 10(2):M110.000679.

    25. [25]

      ZHANG Z B, WANG F J, XU B, QIN H Q, YE M L, ZOU H F. J. Chromatogr. A, 2012, 1256:136-143.

    26. [26]

    27. [27]

      ZHANG Z B, SUN L L, ZHU G J, COX O F, HUBER P W, DOVICHI N J. Anal. Chem., 2016, 88(1):877-882.

    28. [28]

      ZHAO Q, LIANG Y, YUAN H M, SUI Z G, WU Q, LIANG Z, ZHANG L H, ZHANG Y K. Anal. Chem., 2013, 85(18):8507-8512.

    29. [29]

      HUGHES C S, FOEHR S, GARFIELD D A, FURLONG E E, STEINMETZ L M, KRIJGSVELD J. Mol. Syst. Biol., 2014, 10(10):757.

    30. [30]

      HUGHES C S, MOGGRIDGE S, MULLER T, SORENSEN P H, MORIN G B, KRIJGSVELD J. Nat. Protoc., 2019, 14(1):68-85.

    31. [31]

      MULLER T, KALXDORF M, LONGUESPEE R, KAZDAL D N, STENZINGER A, KRIJGSVELD J. Mol. Syst. Biol., 2020, 16(1):e9111.

    32. [32]

      YANG Z C, ZHANG Z R, CHEN D Y, XU T, WANG Y, SUN L L. Anal. Chem., 2021, 93(30):10568-10576.

    33. [33]

      HATA K, IZUMI Y, HARA T, MATSUMOTO M, BAMBA T. Anal. Chem., 2020, 92(4):2997-3005.

    34. [34]

      CHEN W D, WANG S, ADHIKARI S, DENG Z H, WANG L J, CHEN L, KE M, YANG P Y, TIAN R J. Anal. Chem., 2016, 88(9):4864-4871.

    35. [35]

      CHEN W D, ADHIKARI S, CHEN L, LIN L, LI H, LUO S S, YANG P Y, TIAN R J. J. Chromatogr. A, 2017, 1498:207-214.

    36. [36]

    37. [37]

      ZOUGMAN A, SELBY P J, BANKS R E. Proteomics, 2014, 14(9):1006-1010.

    38. [38]

      YUAN H M, DAI Z P, ZHANG X D, ZHAO B F, CHU H W, ZHANG L H, ZHANG Y K. Sci. China:Chem., 2021, 64(2):313-321.

    39. [39]

      YANG J S, QIAO J, KIM J Y, ZHAO L P, QI L, MOON M H. Anal. Chem., 2018, 90(5):3124-3131.

    40. [40]

      LU X, WANG Z K, GAO Y, CHEN W D, WANG L J, HUANG P W, GAO W N, KE M, HE A, TIAN R J. Anal. Chem., 2020, 92(13):8893-8900.

  • 加载中
    1. [1]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    2. [2]

      Hongwei Ma Fang Zhang Hui Ai Niu Zhang Shaochun Peng Hui Li . Integrated Crystallographic Teaching with X-ray,TEM and STM. University Chemistry, 2024, 39(3): 5-17. doi: 10.3866/PKU.DXHX202308107

    3. [3]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    4. [4]

      Kun Li Na Gao Shuangyan Huan Yuzhi Wang . Design of Ideological and Political Education for the Experiment of Detecting Cadmium with Anodic Stripping Voltammetry. University Chemistry, 2024, 39(2): 155-161. doi: 10.3866/PKU.DXHX202307068

    5. [5]

      Hongyan Chen Yajun Hou Shui Hu Zhuoxun Wei Fang Zhu Chengyong Su . Construction of Synthetic Chemistry Experiment of the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 58-63. doi: 10.12461/PKU.DXHX202409109

    6. [6]

      Cunming Yu Dongliang Tian Jing Chen Qinglin Yang Kesong Liu Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008

    7. [7]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    8. [8]

      Zhaohu Li Weidong Wang Yuhao Liu Mingzhe Han Lingling Wei Huan Jiao . Research on the Safety Management and Disposal of Chemical Laboratory Waste. University Chemistry, 2024, 39(10): 128-136. doi: 10.3866/PKU.DXHX202312090

    9. [9]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    10. [10]

      Lisen Sun Yongmei Hao Zhen Huang Yongmei Liu . Experimental Teaching Design for Viscosity Measurement Serves the Optimization of Operating Conditions for Kitchen Waste Treatment Equipment. University Chemistry, 2024, 39(2): 52-56. doi: 10.3866/PKU.DXHX202307063

    11. [11]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    12. [12]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    13. [13]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

    14. [14]

      Feng Liang Desheng Li Yuting Jiang Jiaxin Dong Dongcheng Liu Xingcan Shen . Method Exploration and Instrument Innovation for the Experiment of Colloid ζ Potential Measurement by Electrophoresis. University Chemistry, 2024, 39(5): 345-353. doi: 10.3866/PKU.DXHX202312009

    15. [15]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    16. [16]

      Sifang Zhang Yanli Tan Yu Tao Jiaoyan Zhao Haihong Zhu . Exploration and Practice of Ideological and Political Cases in the Course of Chemistry History and Methodology. University Chemistry, 2024, 39(10): 377-388. doi: 10.12461/PKU.DXHX202312067

    17. [17]

      Yuyang Xu Ruying Yang Yanzhe Zhang Yandong Liu Keyi Li Zehui Wei . Research Progress of Aflatoxins Removal by Modern Optical Methods. University Chemistry, 2024, 39(11): 174-181. doi: 10.12461/PKU.DXHX202402064

    18. [18]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    19. [19]

      Xingyuan Lu Yutao Yao Junjing Gu Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, 2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074

    20. [20]

      Yu'ang Liu Yuechao Wu Junyu Huang Tao Wang Xiaohong Liu Tianying Yan . Computation of Absolute Electrode Potential of Standard Hydrogen Electrode Using Ab Initio Method. University Chemistry, 2025, 40(3): 215-222. doi: 10.12461/PKU.DXHX202407112

Metrics
  • PDF Downloads(6)
  • Abstract views(196)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return