Citation: ZHANG Wei-Jie,  CHEN Jin-Ping,  YU Tian-Jun,  ZENG Yi,  GUO Xu-Dong,  WANG Shuang-Qing,  YANG Guo-Qiang,  LI Yi. Removal and Quantitative Analysis of Metal Ions in Photoresist[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(10): 1750-1757. doi: 10.19756/j.issn.0253-3820.211248 shu

Removal and Quantitative Analysis of Metal Ions in Photoresist

  • Corresponding author: CHEN Jin-Ping,  YANG Guo-Qiang,  LI Yi, 
  • Received Date: 23 March 2021
    Revised Date: 11 June 2021

    Fund Project: Supported by the National Natural Science Foundation of China (Nos.22090012, U20A20144) and the Chinese Academy of Sciences (No.YZQT020).

  • Thiol resin was used as an adsorbent to remove metal ions in organic photoresists. The thermodynamics and kinetics of the adsorption of Pd in photoresists were investigated extensively by inductively coupled plasma-mass spectrometry (ICP-MS). The adsorption data of Pd ion under different temperatures followed pseudo-second-order kinetic model, indicating that the adsorption process was controlled by chemical interactions of Pd and thiol groups. The results of isothermal adsorption were fitted well with Langmuir isothermal adsorption model, indicating that Pd in photoresist tended to adsorb monolayer on the surface of thiol resin. With the temperature increased, the maximum adsorption capacity of thiol resin for Pd increased from 12.68 mg/g to 17.49 mg/g, suggesting that appropriately increasing the adsorption temperature was helpful to improve the adsorption efficiency. The comprehensive purification results showed that thiol resin could be considered as a promising adsorbent for removal of Li, Na, Mg, Al, K, Ca, Cr, Mn, Fe, Ni, Cu, Zn, Pd and Sn ions in the photoresist. Most of the metal ions could be removed, with residual concentration down to 1.0 μg/L level. Compared with the Pall purification system, thiol resin was more effective for Pd purification, decreasing the content of Pd from 5.9 mg/L to 0.4 μg/L. However, for abundant metal ions such as Na and Ca with reducing limitation to 11.8 μg/L and 13.0 μg/L, respectively, the purification needs to be further optimized.
  • 加载中
    1. [1]

      KWON Y G, JIN B K, TSUYOKIKO F, YUJI S, MITSURU U. J. Mater. Chem., 2002, 12(1):53-57.

    2. [2]

      HUA X F, ENGELMANN S, OEHRLEIN G S, LAZZWERI P, IACOB E, ANDERLE M. J. Vac. Sci. Technol. B, 2006, 24(4):1850-1858.

    3. [3]

      RATHORE A, POLLENTIER I, SINGH H, FALLICA R, DE SIMONE D, GENDT D. J. Mater. Chem. C, 2020, 8(17):5958-5966.

    4. [4]

      CAPITANIO D, MIZUNO Y, LEE J. Proc. SPIE, 1999, 3678:684-688.

    5. [5]

    6. [6]

      TSENG H S, LING X P. Proc. SPIE., 2002, 4690:809-816.

    7. [7]

    8. [8]

    9. [9]

      ZENG G Y, HE Y, ZHAN Y Q, ZHANG L, PAN Y, ZHANG C L, YU Z X. J. Hazard. Mater., 2016, 317:60-72.

    10. [10]

      WACLAWEK S, LUTZE H V, VRUBEL K, PADIL V V T, CERNIK M, DIONYSIOU D D. Chem. Eng. J., 2017, 330:44-62.

    11. [11]

      DURU I, EGE D, KAMAIL A R. J. Mater. Sci., 2016, 51(13):6097-6116.

    12. [12]

      LEE C G, LEE S, PARK J A, PARK C, LEE S J, KIM S B, AN B, YUN S T, LEE S H, CHOI J W. Chemosphere, 2017, 166:203-211.

    13. [13]

      ABBAS K, ZNAD H, AWUAL M R. Chem. Eng. J., 2018, 334:432-443.

    14. [14]

      LI G L, ZHAO Z S, LIU J Y, JIANG G B. J. Hazard. Mater., 2011, 192(1):277-283.

    15. [15]

      HUA R, LI Z K. Chem. Eng. J., 2014, 249:189-200.

    16. [16]

      YU Q, FEIN J B. Environ. Sci. Technol., 2017, 51(24):14360-14367.

    17. [17]

      LITTKE A F, FU G G. Angew. Chem., Int. Ed., 2002, 41(22):4176-4211.

    18. [18]

      SCHEUERMANN G M, RUMI L, STEURER P, BANNWARTH W, MUELHAUPT R. J. Am. Chem. Soc., 2009, 131(23):8262-8270.

    19. [19]

      SCHROETER F, STRASSNER T. Eur. J. Inorg. Chem., 2017, (36):4231-4236.

    20. [20]

      PENG X M, WANG Y F, XU J, YUAN H, WANG L Q, ZHANG T, GUO X D, WANG S Q, LI Y, YANG G Q. Macromil. Mater. Eng., 2018, 303(6):1700654.

    21. [21]

      CHEN J P, HAO Q S, WANG S Q, LI S Y, YU T J, ZENG Y, ZHAO J, YANG S M, WU Y Q, XUE C F, YANG G Q, LI Y. ACS Appl. Polym. Mater., 2019, 1(3):526-534.

    22. [22]

    23. [23]

      ALQADAMI A A, NAUSHAD M, ABDALLA M A, AHAMAD T, ALOTHMAN Z A, ALSHEHRI S M, GHFAR A A. J. Cleaner Prod., 2017, 156:426-436.

    24. [24]

      DEHGHANI M H, SANAEI D, ALI I, BHATNAGAR A. J. Mol. Liq., 2016, 215:671-679.

    25. [25]

      AIL R M, HAMAD H A, HUSSEIN M M, MALASH G F. Ecol. Eng., 2016, 91:317-332.

    26. [26]

      NAUSHAD M, AHAMAD T, SHARMA G, AL-MUHTASED A H, ALBADARIN A B, ALAM M M, ALOTHMAN Z A, ALSHEHRI S M, GHFAR A A. Chem. Eng. J., 2016, 300:306-316.

  • 加载中
    1. [1]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    2. [2]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    3. [3]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    4. [4]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    5. [5]

      Fei XieChengcheng YuanHaiyan TanAlireza Z. MoshfeghBicheng ZhuJiaguo Yud-Band Center Regulated O2 Adsorption on Transition Metal Single Atoms Loaded COF: A DFT Study. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-0. doi: 10.3866/PKU.WHXB202407013

    6. [6]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    7. [7]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    8. [8]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    9. [9]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    10. [10]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    11. [11]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    12. [12]

      Wenjuan SHIYuke LUXiuyuan LILei HOUYaoyu WANG . Mg(Ⅱ) metal-organic frameworks based on biphenyltetracarboxylic acid: Synthesis and CO2 adsorption and catalytic conversion performance. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2455-2463. doi: 10.11862/CJIC.20250220

    13. [13]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    14. [14]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    15. [15]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    16. [16]

      Wenwen Zhang Peichao Zhang Conghao Gai Xiaoyun Chai Yan Zou Qingjie Zhao . Unveiling Kinetics at Natural Abundance: 13C NMR Isotope Effect Experiments. University Chemistry, 2025, 40(10): 203-207. doi: 10.12461/PKU.DXHX202411076

    17. [17]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    18. [18]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    19. [19]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    20. [20]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

Metrics
  • PDF Downloads(60)
  • Abstract views(2162)
  • HTML views(521)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return