Citation: DING Jian-Hua,  XU Wen-Ping,  ZHU Yu-Ling. Mixed-mode Solid Phase Extraction Coupled with High Performance Liquid Chromatography for Analysis of Non-steroidal Anti-inflammatory Drugs Residues in Bovine Milk[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(6): 1013-1023. doi: 10.19756/j.issn.0253-3820.211239 shu

Mixed-mode Solid Phase Extraction Coupled with High Performance Liquid Chromatography for Analysis of Non-steroidal Anti-inflammatory Drugs Residues in Bovine Milk

  • Corresponding author: ZHU Yu-Ling, zyl9568@ecut.edu.cn
  • Received Date: 21 March 2021
    Revised Date: 29 May 2023

    Fund Project: Supported by the Department of Science and Technology of Jiangxi Province (No. 20192BBG7008) and the Doctoral Research Fund of East China University of Technology (No. DHBK2019145).

  • A imidazolium ionic liquid-functionalized silica (Sil-IL) was synthesized and used as mixed-mode sorbent for solid phase extraction (SPE) of non-steroidal anti-inflammatory drugs (NSAIDs, naproxen, ketoprofen, indoometacin and tolfenamic acid) residues from bovine milk. A method combining this mixed-mode SPE and high performance liquid chromatography-ultraviolet detector (HPLC-UV) was established for simultaneous analysis of four kinds of NSAIDs residues in bovine milk. The prepared Sil-IL was characterized by Fourier transform infrared spectra, Raman spectra and elemental analysis. Then the retention mechanism of NSAIDs on Sil-IL sorbent was explored and the parameters affecting the extraction efficiency were optimized. Experimental results showed that Sil-IL had good extraction selectivity and high extraction efficiency towards four kinds of NSAIDs. Meanwhile, the interaction between Sil-IL and NSAIDs was mainly hydrophobic and anion exchange interactions. Under optimal SPE conditions, good sensitivity was achieved with a limit of detection of 1.2-1.9 μg/kg. The method displayed good linear relationship in the concentration range of 3-1000 μg/L for ketoprofen, naproxen, indomethacin and 4-1000 μg/L for tolfenamic acid, with the correlation coefficient (R2) of 09996-0.9998. The intra-day and inter-day precision were 1.0%-3.0% and 1.9%-6.3%, respectively. The recoveries of four kinds of NSAIDs in bovine milk at two spiked levels were 90.8%-105.3% with relative standard deviations less than 6.1%. The established method was proved to be accurate, reliable, simple, sensitive and selective, and could be used for determination of NSAIDs residues in milk sample.
  • 加载中
    1. [1]

      VAN PAMEL E, DAESELEIRE E. Anal. Bioanal. Chem., 2015, 407(15):4485-4494.

    2. [2]

    3. [3]

    4. [4]

      Commission Regulation (EU) No. 37/2010 of 22 December 2009 on Pharmacologically Active Substances and Their Classification Regarding Maximum Residue Limits in Foodstuffs of Animal Origin. Off. J. Eur. Union, L15:1-72.

    5. [5]

    6. [6]

      TARTAGLIA A, KABIR A, D'AMBROSIO F, RAMUNDO P, ULUSOY S, ULUSOY H I, MERONE G M, SAVINI F, D'OVIDIO C, GRAZIA U D, FURTON K G, LOCATELLI M. J. Chromatogr. B, 2020, 1144:122082.

    7. [7]

      SEIDI S, SANATI S E. Microchim. Acta, 2019, 186(5):297.

    8. [8]

      MIRZAJANI R, KARDANI F, RAMEZANI Z. Microchem. J., 2019, 144:270-284.

    9. [9]

      LI W, HUANG L, GUO D, ZHAO Y, ZHU Y. J. Chromatogr. A, 2018, 1571:76-83.

    10. [10]

    11. [11]

      WANG Y, OU Y, XIE S, CHEN D, WANG X, PAN Y, WANG Y, HUANG L, CHENG G, QU W, LIU Z, TAO Y, YUAN Z. Food Anal. Methods, 2019, 12(6):1346-1368.

    12. [12]

      SHISHOV A, NECHAEVA D, BULATOV A. Microchem. J., 2019, 150:104080.

    13. [13]

      MARTA Z, BOBALY B, FEKETE J, MAGDA B, IMRE T, SZABO P T. J. Pharm. Biomed. Anal., 2018, 160:99-108.

    14. [14]

      HUANG C, LI Y, YANG J, PENG J, TAN J, FAN Y, WANG L, CHEN J. Talanta, 2018, 190:15-22.

    15. [15]

      REINHOLDS I, PUGAJEVA I, ZACS D, LUNDANES E, RUSKO J, PERKONS I, BARTKEVICS V. Environ. Monit. Assess., 2017, 189(11):568.

    16. [16]

      KANG J W, PARK S J, PARK H C, GEDI V, SO B J, LEE K J. Appl. Biochem. Biotechnol., 2014, 174(1):1-5.

    17. [17]

      GOKTAS E F, KABIL E, ABIOZ F. Drug. Test. Anal., 2020, 12(8):1065-1077.

    18. [18]

      AVINO P, NOTARDONATO I, PASSARELLA S, RUSSO M V. Appl. Sci., 2020, 10(16):5441.

    19. [19]

      JI Y, DU Z, ZHANG H, ZHANG Y. Anal. Methods, 2014, 6(18):7294-7304.

    20. [20]

      JAFARI Z, HADJMOHAMMADI M R. Anal. Methods, 2020, 12(36):4429-4437.

    21. [21]

      MEUCCI V, MINUNNI M, VANNI M, SGORBINI M, CORAZZA M, INTORRE L. Bioanalysis, 2014, 6(16):2147-2158.

    22. [22]

      AZZOUZ A, JURADO-SANCHEZ B, SOUHAIL B, BALLESTEROS E. J. Agric. Food Chem., 2011, 59(9):5125-5132.

    23. [23]

      GUC M, SCHROEDER G. Appl. Sci., 2020, 10(12):4217.

    24. [24]

    25. [25]

    26. [26]

      BERTHOD A, RUIZ-ÁNGEL M J, CARDA-BROCH S. J. Chromatogr. A, 2018, 1559:2-16.

    27. [27]

      TIAN M, YAN H, ROW K H. J. Chromatogr. B, 2009, 877(8-9):738-742.

    28. [28]

      ZHU Y, ZHANG W, LI L, WU C, XING J. Anal. Methods, 2014, 6(7):2102-2111.

    29. [29]

      JEDZINIAK P, SZPRENGIER-JUSZKIEWICZ T, PIETRUK K, SLEDZINSKA E, ZMUDZKI J. Anal. Bioanal. Chem., 2012, 403(10):2955-2963.

    30. [30]

      KIBBEY C E, MEYERHOFF M E. Anal. Chem., 1993, 65(17):2189-2196.

  • 加载中
    1. [1]

      Yifan Xie Liyun Yao Ruolin Yang Yuxing Cai Yujie Jin Ning Li . Exploration and Practice of Online and Offline Hybrid Teaching Mode in High-Performance Liquid Chromatography Experiment. University Chemistry, 2025, 40(11): 100-107. doi: 10.12461/PKU.DXHX202412133

    2. [2]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    3. [3]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    4. [4]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    5. [5]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    6. [6]

      Siming Bian Sijie Luo Junjie Ou . Application of van Deemter Equation in Instrumental Analysis Teaching: A New Type of Core-Shell Stationary Phase. University Chemistry, 2025, 40(3): 381-386. doi: 10.12461/PKU.DXHX202406087

    7. [7]

      Gengjia Chen Junjie Ou . Application of the van Deemter Equation in Instrumental Analysis Teaching: A Case of Organic Polymer Monolithic Columns. University Chemistry, 2025, 40(11): 362-368. doi: 10.12461/PKU.DXHX202502003

    8. [8]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    9. [9]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    10. [10]

      Yajie LiBin ChenYiping WangHui XingWei ZhaoGeng ZhangSiqi Shi . Inhibiting Dendrite Growth by Customizing Electrolyte or Separator to Achieve Anisotropic Lithium-Ion Transport: A Phase-Field Study. Acta Physico-Chimica Sinica, 2024, 40(3): 2305053-0. doi: 10.3866/PKU.WHXB202305053

    11. [11]

      Runjie Li Hang Liu Xisheng Wang Wanqun Zhang Wanqun Hu Kaiping Yang Qiang Zhou Si Liu Pingping Zhu Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059

    12. [12]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    13. [13]

      Shunü Peng Huamin Li Zhaobin Chen Yiru Wang . Simultaneous Application of Multiple Quantitative Analysis Methods in Gas Chromatography for the Determination of Active Ingredients in Traditional Chinese Medicine Preparations. University Chemistry, 2025, 40(10): 243-249. doi: 10.12461/PKU.DXHX202412043

    14. [14]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

    15. [15]

      Shan ZhaoXu LiuHaotian GuoZonglin LiuPengfei WangJie ShuTingfeng Yi . Synergistic design of high-entropy P2/O3 biphasic cathodes for high-performance sodium-ion batteries. Acta Physico-Chimica Sinica, 2026, 42(1): 100129-0. doi: 10.1016/j.actphy.2025.100129

    16. [16]

      Gaoyan Chen Chaoyue Wang Juanjuan Gao Junke Wang Yingxiao Zong Kin Shing Chan . Heart to Heart: Exploring Cardiac CT. University Chemistry, 2024, 39(9): 146-150. doi: 10.12461/PKU.DXHX202402011

    17. [17]

      Binbin LiuYang ChenTianci JiaChen ChenZhanghao WuYuhui LiuYuhang ZhaiTianshu MaChanglei Wang . Hydroxyl-functionalized molecular engineering mitigates 2D phase barriers for efficient wide-bandgap and all-perovskite tandem solar cells. Acta Physico-Chimica Sinica, 2026, 42(1): 100128-0. doi: 10.1016/j.actphy.2025.100128

    18. [18]

      Jiayao WangGuixu PanNing WangShihan WangYaolin ZhuYunfeng Li . Preparation of donor-π-acceptor type graphitic carbon nitride photocatalytic systems via molecular level regulation for high-efficient H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(12): 100168-0. doi: 10.1016/j.actphy.2025.100168

    19. [19]

      Chongjing LiuYujian XiaPengjun ZhangShiqiang WeiDengfeng CaoBeibei ShengYongheng ChuShuangming ChenLi SongXiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-0. doi: 10.3866/PKU.WHXB202309036

    20. [20]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

Metrics
  • PDF Downloads(16)
  • Abstract views(4035)
  • HTML views(196)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return