Citation: LIN Jing-Yu,  JIANG Xin-Xin,  YU Jia-Rui,  WEI Xiao-Ping,  LI Jian-Ping. A Novel Biosensor of Acetylcholinesterase Immobilized in Metal Organic Framework Based on Gold Nanoflower for Detection of Glyphosate[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(11): 1834-1844. doi: 10.19756/j.issn.0253-3820.211095 shu

A Novel Biosensor of Acetylcholinesterase Immobilized in Metal Organic Framework Based on Gold Nanoflower for Detection of Glyphosate

  • Corresponding author: WEI Xiao-Ping,  LI Jian-Ping, 
  • Received Date: 31 January 2021
    Revised Date: 11 July 2021

    Fund Project: Supported by the Guangxi Natural Science Foundation, China (No.2021GXNSFAA196011).

  • An electrochemical biosensor based on gold nanoflower (GNF) and metal organic framework (MOF) immobilized acetylcholinesterase (AChE) was constructed and used for highly sensitive detection of glyphosate. Firstly, Nafion-Teflon polymer film was formed on glassy carbon electrode (GCE), and GNF with good dispersion was obtained by electrodeposition. Then p-aminothiophenol (4-ATP) was self-assembled on the surface of GNF, and then AChE was immobilized on the electrode by the interaction of amide bond with 4-ATP. Finally, MOF was formed by electropolymerization in a solution containing AChE and 4-ATP functionalized gold nanoparticles (Au@4-ATP), and more AChE was immobilized to prepare AChE sensor (MOF/AChE/GNF/GCE). The biocatalytic activity of the sensor was investigated, and glyphosate was indirectly determined by voltammetry according to the inhibitory effect of glyphosate on the hydrolysis of thioacetylcholine iodide catalyzed by AChE. The logarithm of glyphosate concentration in the range of 5.0×10-16-1.0×10-10 mol/L exhibited a good linear relationship with the current response of differential pulse voltammetry (DPV), and the detection limit was 1.3×10-16 mol/L (S/N=3). The results showed that the method overcame the deficiencies of low enzyme loading, easy aggregation, poor activity, and poor conductivity of MOF itself when conventional MOF was used to immobilize enzymes, and had extremely high sensitivity. The sensor was used for determination of glyphosate in vegetables.
  • 加载中
    1. [1]

      BAO J, HUANG T, WANG Z N, YANG H, GENG X T, XU G L, SAMALO M, SAKINATI M, HUO D Q, HOU C J. Sens. Actuators, B, 2019, 279:95-101.

    2. [2]

      YAO T T, LIU A R, LIU Y, WEI M, WEI W, LIU S Q. Biosens. Bioelectron., 2019, 145:111705.

    3. [3]

      LIANG B, HAN L. Biosens. Bioelectron., 2020, 148:111825.

    4. [4]

      JIA L P, ZHOU Y X, WU K P, FENG Q L, WANG C M, HE P. Bioelectrochemistry, 2020, 131:107392.

    5. [5]

      WANG S M, YE Z J, WANG X, XIAO L H. ACS Appl. Nano Mater., 2019, 2:6646-6654.

    6. [6]

      LU X, LI Y S, TAO L, SONG D D, WANG Y Z, LI Y, GAO F M. Nanotechnology, 2018, 30(5):055501.

    7. [7]

      HUANG S, YAO J D, CHU X, LIU Y, XIAO Q, ZHANG Y. J. Agric. Food Chem., 2019, 67:11244-11255.

    8. [8]

      BOERIS V, ARANCIBIA J A, OLIVIERI A C. Anal. Chim. Acta, 2014, 814:23-30.

    9. [9]

      AKDOGAN A, KARTAL A A, HOL A, YILMAZ Y, DIVRIKLI U, ELCI L. Anal. Lett., 2014, 47(4):675-688.

    10. [10]

      ZHANG N, SI Y M, SUN Z Z, LI S, LI S Y, LIN Y H, WANG H. Analyst, 2014, 139(18):4620-4628.

    11. [11]

      HARSHIT D, CHARMY K, NRUPESH P. Food Chem., 2017, 230:448-453.

    12. [12]

      ZHANG Y, FA H B, HE B, HOU C J, HUO D Q, XIA T C, YIN W. J. Solid State Electrochem., 2017, 21:2117-2128.

    13. [13]

      KUMAR P, KIM K H, DEEP A. Biosens. Bioelectron., 2015, 70:469-481.

    14. [14]

      SCHULZE H, VORLOVA S, VILLATTE F, BACHMANN T T, SCHMID R D. Biosens. Bioelectron., 2003,18(2-3):201-209.

    15. [15]

      WEI M, WANG J J. Sens. Actuators, B, 2015, 211:290-296.

    16. [16]

      YU G X, WU W X, ZHAO Q, WEI X Y, LU Q. Biosens. Bioelectron., 2015, 68:288-294.

    17. [17]

      ZDARTA J, MEYER A S, JESIONOWSKI T, PINELO M. Catalysts, 2018, 8(2):92.

    18. [18]

      ALTINKAYNAK C, TAVLASOGLU S, OZDEMIR N, OCSOY I. Enzyme Microb. Technol., 2016, 93:105-112.

    19. [19]

      LIANG H, JIANG S H, YUAN Q P, LI G F, WANG F, ZHANG Z J, LIU J W. Nanoscale, 2016, 8(11):6071-6078.

    20. [20]

      JESIONOWSKI T, ZDARTA J, KRAJEWSKA B. Adsorption, 2014, 20(5-6):801-821.

    21. [21]

      CRESPILHO F N, GHICA M E, FLORESCU M, NART F C, OLIVEIRA O N, BRETT C M A. Electrochem. Commun., 2006, 8(10):1665-1670.

    22. [22]

      HONAISER T C, FICANHA A M M, DALLAGO R M, OLIVEIRA D, OLIVEIRA J V, PAROUL N, MARCELO L. Indust. Biotechnol., 201915(1):35-40.

    23. [23]

    24. [24]

      DONG S Y, PENG L, WEI W B, HUANG T L. ACS Appl. Mater. Interfaces, 2018, 10(17) 14665-14672.

    25. [25]

      SONG Y G, SHAN B X, FENGB W, XU P F, ZENG Q, SU D. RSC Adv., 2018, 8(47):27008-27015.

    26. [26]

      BABAEI A, TAHERI A R. Sens. Actuators, B, 2013, 176:543-551.

    27. [27]

      ER E, ÇELIKKAN H, ERK N. Sens. Actuators, B, 2017, 238:779-787.

    28. [28]

    29. [29]

    30. [30]

      BEN-AMRAM Y, RISKIN M, WILLNER I. Analyst, 2010, 135(11):2952-2959.

    31. [31]

      WEI X P, WU T, YUAN Y L, MA X H, LI J P. Anal. Methods, 2017, 9(11):1771-1778.

    32. [32]

      WU T, WEI X P, MA X H, LI J P. Microchim. Acta, 2017, 184:2901-2907.

    33. [33]

      TEL-VERED R, KAHN J S, WILLNER I. Small, 2016, 12(1):51-75.

    34. [34]

      DEBOUTTIōRE P J, ROUX S, VOCANSON F, BILLOTEY C, BEUF O, FAVRE-RÉGUILLON A, LIN Y, PELLET-ROSTAING S, LAMARTINE R, PERRIAT P. Adv. Funct. Mater., 2006, 16(18):2330-2339.

    35. [35]

      ZHANG X Y, PENG Y, BAI J L, NING B A, SUN S M, HONG X D, LIU Y Y, LIU Y, GAO Z X. Sens. Actuators, B, 2014, 200:69-75.

    36. [36]

      DU D, CHEN S, CAI J, ZHANG A. Biosens. Bioelectron., 2007, 23(1):130-134.

    37. [37]

      LEE C, WEI X D, KYSAR J W, HONE J. Science, 2008, 321(5887):385-388.

    38. [38]

      LI Y P, SHI L Y, HAN G Y, XIAO Y M, ZHOU W. Sens. Actuators, B, 2017, 238:945-953.

    39. [39]

      LU X, TAO L, SONG D D, LI Y, GAO F M. Sens. Actuators, B, 2018, 255:2575-2581.

    40. [40]

      ALCOCER M J C, DOYEN C, LEE H A, MORGAN M R A. J. Agric. Food Chem., 2000, 48(9):4053-4059.

    41. [41]

      ZHAO H Y, JI X P, WANG B B, WANG N, LI X R, NI R X, REN J J. Biosens. Bioelectron., 2015, 65:23-30.

    42. [42]

      CUI H F, WU W W, LI M M, SONG X J, LV Y X, ZHANG T T. Biosens. Bioelectron., 2018, 99:223-229.

    43. [43]

      KUMAR T H V, SUNDRAMOORTHY A K. Anal. Chim. Acta, 2019, 1074:131-141.

    44. [44]

  • 加载中
    1. [1]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-0. doi: 10.3866/PKU.WHXB202310046

    2. [2]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    3. [3]

      Ruiqin FengYe FanYun FangYongmei Xia . Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering. Acta Physico-Chimica Sinica, 2024, 40(4): 2304020-0. doi: 10.3866/PKU.WHXB202304020

    4. [4]

      Ping LIGeng TANXin HUANGFuxing SUNJiangtao JIAGuangshan ZHUJia LIUJiyang LI . Green synthesis of metal-organic frameworks with open metal sites for efficient ammonia capture. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2063-2068. doi: 10.11862/CJIC.20250020

    5. [5]

      Ruige ZHANGZhe ZHANGHe ZHENGZhan SHI . Recent advances of metal-organic frameworks for alkaline electrocatalytic oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2011-2028. doi: 10.11862/CJIC.20250185

    6. [6]

      Xiaogang YANGXinya ZHANGJing LIHuilin WANGMin LIXiaotian WEIXinci WULufang MA . Synthesis, structure, and photoelectric properties of Zinc(Ⅱ)-triphenylamine based metal-organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2078-2086. doi: 10.11862/CJIC.20250167

    7. [7]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    8. [8]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    9. [9]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    10. [10]

      Wenjuan SHIYuke LUXiuyuan LILei HOUYaoyu WANG . Mg(Ⅱ) metal-organic frameworks based on biphenyltetracarboxylic acid: Synthesis and CO2 adsorption and catalytic conversion performance. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2455-2463. doi: 10.11862/CJIC.20250220

    11. [11]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    12. [12]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    13. [13]

      Zehao ZhangZheng WangHaibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020

    14. [14]

      Lin′an CAODengyue MAGang XU . Research advances in electrically conductive metal-organic frameworks-based electrochemical sensors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1953-1972. doi: 10.11862/CJIC.20250160

    15. [15]

      Xueqi YangJuntao ZhaoJiawei YeDesen ZhouTingmin DiJun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074

    16. [16]

      Yinjie XuSuiqin LiLihao LiuJiahui HeKai LiMengxin WangShuying ZhaoChun LiZhengbin ZhangXing ZhongJianguo Wang . Enhanced Electrocatalytic Oxidation of Sterols using the Synergistic Effect of NiFe-MOF and Aminoxyl Radicals. Acta Physico-Chimica Sinica, 2024, 40(3): 2305012-0. doi: 10.3866/PKU.WHXB202305012

    17. [17]

      Zhuo WangXue BaiKexin ZhangHongzhi WangJiabao DongYuan GaoBin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 100026-0. doi: 10.3866/PKU.WHXB202405002

    18. [18]

      Hongpeng HeMengmeng ZhangMengjiao HaoWei DuHaibing Xia . Synthesis of Different Aspect-Ratios of Fixed Width Gold Nanorods. Acta Physico-Chimica Sinica, 2024, 40(5): 2304043-0. doi: 10.3866/PKU.WHXB202304043

    19. [19]

      Xingchao ZhaoXiaoming LiMing LiuZijin ZhaoKaixuan YangPengtian LiuHaolan ZhangJintai LiXiaoling MaQi YaoYanming SunFujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021

    20. [20]

      Xinwan ZhaoYue CaoMinjun LeiZhiliang JinTsubaki Noritatsu . Constructing S-scheme heterojunctions by integrating covalent organic frameworks with transition metal sulfides for efficient noble-metal-free photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(12): 100152-0. doi: 10.1016/j.actphy.2025.100152

Metrics
  • PDF Downloads(26)
  • Abstract views(1231)
  • HTML views(186)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return