Citation: ZHU Hui,  XIA Yun-Sheng. Fabrication, Properties and Bio-imaging Application of Supraparticles[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(7): 1089-1105. doi: 10.19756/j.issn.0253-3820.211094 shu

Fabrication, Properties and Bio-imaging Application of Supraparticles

  • Corresponding author: XIA Yun-Sheng, xiayuns@mail.ahnu.edu.cn
  • Received Date: 31 January 2021
    Revised Date: 24 May 2021

    Fund Project: Supported by the National Natural Science Foundation of China (No. 21775004).

  • Supraparticles (SPs) are the nano-agglomerates with a certain shape and hierarchical structure, which are self-assembled by same or different kinds of individual inorganic nanocrystals. SPs not only exhibit collective properties and/or synergistic effects, but their diverse shapes and devisable spatial structures provide multi-scale and multi-dimensional possibilities for the interactions with various biological systems. Thus, SPs show a variety of application potentials in bio-sensing, bio-imaging, diagnosis and even therapy, etc. In this review, the progress of SPs fabrication, properties, and their applications in bioimaging field in recent years are summarized, and the main problems and future development of their fabrication and applications in bio-medicine are discussed.
  • 加载中
    1. [1]

      CROZALS G D, BONNET R, FARRE C, CHAIX C. Nano Today, 2016, 11(4): 435-463.

    2. [2]

      MCNAMARA K, TOFAIL S A M. Adv. Phys. X, 2017, 2(1): 54-88.

    3. [3]

      KIM M, LEE J H, NAM J. M. Adv. Sci., 2019, 6(17): 1900471.

    4. [4]

      LI F, LU J, KONG X, HYEON T, LING D. Adv. Mater., 2017, 29(14): 1605897.

    5. [5]

      LAWLESS D. KAPOOR S, MEISEL D. J. Phys. Chem., 1995, 99(25): 10329-10335.

    6. [6]

      VELEV O D. Science, 2000, 287(5461): 2240-2243.

    7. [7]

      VELEV O D, FURUSAWA K, NAGAYAMA K. Langmuir, 1996, 1291(10): 2385-2391.

    8. [8]

      DIAMOND S. Clays Clay Miner., 1971, 19(4): 239-249.

    9. [9]

      BACHELLERIE J P, NICOLOSO M, ZALTA J P. Eur. J. Biochem., 1977, 79(1): 23-32.

    10. [10]

      XIA Y, TANG Z. Chem, Commun., 2012, 48(51): 6320-6336

    11. [11]

      PICCININI E, PALLAROLA D, BATTAGLINIC F, AZZARONI O. Mol. Syst. Des. Eng., 2016, 1(2): 155-162.

    12. [12]

      XUE Z, WANG P, PENG A, WANG T. Adv. Mater., 2019, 31(38): 1801441.

    13. [13]

      WINTZHEIMER S, GRANATH T, OPPMANN M, KISTER T, THAI T, KRAUS T, VOGEL N, MANDEL K. ACS Nano, 2018, 12(6): 5093-5120.

    14. [14]

      MA W, XU L, WANG L, KUANG H, XU C. Biosens, Bioelectron., 2016, 79(15): 220-236.

    15. [15]

      YAN C, WANG T. Chem. Soc. Rev., 2017, 46(5): 1483-1509.

    16. [16]

      WU X, HAO C, KUMAR J, KUANG H, KOTOV N A, LIZ-MARZÁN L M, XU C. Chem. Soc. Rev., 2018, 47(13): 4677-4696.

    17. [17]

      WU Z, YAO Q, ZANG S, XIE J. ACS Mater. Lett., 2019, 1(2): 237-248.

    18. [18]

      HOU K, HAN J, TANG Z. ACS Mater. Lett., 2020, 2(1): 95-106.

    19. [19]

      DENG K, LUO Z, TAN L, QUAN Z. Chem. Soc. Rev., 2020, 49(16): 6002-6038.

    20. [20]

      BOLES M A, ENGE M, TALAPIN D V. Chem. Rev., 2016, 116(18): 11220-11289.

    21. [21]

      MARINO E, KODGER T E, WEGDAM G H, SCHALL P. Adv. Mater., 2018, 30(43): 1803433.

    22. [22]

      YAO L, WANG B, YANG Y, CHEN X, HU J, YANG D, DONG A. Chem. Commun., 2019, 55(9): 1229.

    23. [23]

      VANMAEKELBERGH D. ACS Nano, 2018, 12(12): 12788-12794.

    24. [24]

      PARK S, HWANG H, KIM M, MOON J H, KIM S H. Nanoscale, 2020, 12(36): 18576-18594.

    25. [25]

      OPPMANN M, MILLER F, THUERAUF S, GROPPE P, PRIESCHL J, STAUCH C. MANDEL K. ACS Appl. Mater. Interfaces, 2018, 10(16): 14183-14192.

    26. [26]

      CANZIANI H, CHIERA S, SCHUFFENHAUER T, KOPP S P, METZGER F, BÜCK A, SCHMIDT M, VOGEL N. Small, 2020, 16(30): 2002076.

    27. [27]

      WINTZHEIMER S, OPPMANN M, DOLD M, PANNEK C, BAUERSFELD M L, HENFLING M, TRUPP S, SCHUG B, MANDEL K. Part. Part. Syst. Charact., 2019, 36(10): 1900254.

    28. [28]

      BAI F, WANG D, HUO Z, CHEN W, LIU L, LIANG X, CHEN C, WANG X, PENG Q, LI Y. Angew. Chem., Int. Ed., 2007, 119(35): 6770-6773.

    29. [29]

      SHI R, CAO Y, BAO Y, ZHAO Y, WATERHOUSE G I N, FANG Z, WU L Z, TUNG C H, YIN Y, ZHANG T. Adv. Mater., 2017, 29(27): 1700803.

    30. [30]

      LUO D, QIN X, SONG Q, QIAO X, ZHANG Z, XUE Z, LIU C, MO G, WANG T. Adv. Funct. Mater., 2017, 27(44): 1701982.

    31. [31]

      KISTER T, MRAVLAK M, SCHILLING T, KRAUS T. Nanoscale, 2016, 8(27): 13377-13384.

    32. [32]

      YANG Y, WANG B, SHEN X, YAO L, WANG L, CHEN X, XIE S, LI T, HU J, YANG D, DONG A. J. Am. Chem. Soc., 2018, 140(44): 15038-15047.

    33. [33]

      CHEN Y, NURUMBETOV G, CHEN R, BALLARD N, BON S A F. Langmuir, 2013, 29(41): 12657-12662.

    34. [34]

      KIM J H, JEON T Y, CHOI T M, SHIM T S, KIM S H, YANG S M. Langmuir, 2014, 30(6): 1473-1488.

    35. [35]

      GAO A, LIU J, YE L, SCHÖNECKER C, KAPPL M, BUTT H J, STEFFEN W. Langmuir, 2019, 35(43): 14042-14048.

    36. [36]

      SPERLING M, GRADZIELSKI M. Gels, 2017, 3(2): 15.

    37. [37]

      WOOH S, HUESMANN H, TAHIR M N, PAVEN M, WICHMANN K, VOLLMER D, TREMEL W, PAPADOPOULOS P, BUTT H J. Adv. Mater., 2015, 27(45): 7338-7343.

    38. [38]

      LIU W, KAPPL M, BUTT H J. ACS Nano, 2019, 13(12): 13949-13956.

    39. [39]

      LIU W, MIDYA J, KAPPL M, BUTT H J, NIKOUBASHMAN A. ACS Nano, 2019, 13(5): 4972-4979.

    40. [40]

      MAAS M, SILVÉRIO C C, LAUBE J, REZWAN K. J. Colloid Interface Sci., 2017, 501(1): 256-266.

    41. [41]

      YU Y, YANG X, LIU M, NISHIKAWA M, TEI T, MIYAKO E. ACS Appl. Mater. Interfaces, 2019, 11(21): 18978-18987.

    42. [42]

      LI N, ZHANG M, ZHA Y, CAO Y, MA Y. J. Colloid Interface Sci., 2020, 575(1): 54-60.

    43. [43]

      HUANG J, XIAO Y, PENG Z, XU Y, LI L, TAN L, YUAN K, CHEN Y. Adv. Sci., 2019, 6(12): 1900107.

    44. [44]

      MA Z, GAO G, LUO Z, TANG X, SUN T. J. Phys. Chem. C, 2019, 123(40): 24973-24978.

    45. [45]

      WANG Y, ZEIRI O, RAULA M, OUAY B L, STELLACCI F, WEINSTOCK I A. Nat. Nanotechnol., 2016, 12(2): 170-176.

    46. [46]

      NAKANISHI H, DEÁK A, HÓLLÓ G, LAGZI I. Angew. Chem., Int. Ed., 2018, 57(49): 16062–16066.

    47. [47]

      AI Y, LIU L, ZHANG C, QI L, HE M, LIANG Z, SUN H, LUO G, LIANG Q. ACS Appl. Mater. Interfaces, 2018, 10(38): 32180-32191.

    48. [48]

      MARTÍNEZ-ESAÍN J, FARAUDO J, PUIG T, OBRADORS X, ROS J, RICART S, YÁÑEZ R. J. Am. Chem. Soc., 2018, 140(6): 2127-2134.

    49. [49]

      LING J, GONG S, XIA Y. Adv. Mater. Interfaces, 2020, 7(18): 2000804.

    50. [50]

      MA M, ZHU H, LING J, GONG S, ZHANG Y, XIA Y, TANG Z. ACS Nano, 2020, 14(4): 4036-4044.

    51. [51]

      ZHANG W, XIAO J, CAO Q, WANG W, PENG X, GUAN G, CUI Z, ZHANG Y, WANG S, ZOU R, WAN X, QIU H, HU J. Nanoscale, 2018, 10(24): 11430-1140.

    52. [52]

      YEOM J, GUIMARAES P P G, AHN H M, JUNG B K, HU Q, MCHUGH K, MITCHELL M J, YUN C O, LANGER R, JAKLENEC A. Adv. Mater., 2019, 32(1): 1903878.

    53. [53]

      XIA Y, NGUYEN T D, YANG M, LEE B, SANTOS A, PODSIADLO P, TANG Z, GLOTZER S C, KOTOV N A. Nat. Nanotechnol., 2011, 6(9): 580-588.

    54. [54]

      WANG W, HAO C, SUN M, XU L, XU C, KUANG H. Adv. Funct. Mater., 2018, 28(22): 1800310.

    55. [55]

      CHEN Y, FU G, LI Y, GU Q, XU L, SUN D, TANG Y. J. Mater. Chem. A, 2017, 5(8): 3774-3779.

    56. [56]

      ZHUANG J, WU H, YANG Y, CAO Y C. J. Am. Chem. Soc., 2007, 129(46): 14166-14167.

    57. [57]

      SAINI M, VERMA A, TOMAR K, BHARADWAJ P K, SADHU K K. Chem. Commun., 2018, 54(91): 12836-12839.

    58. [58]

      JIANG K Y, WENG Y L, GUO S Y, YU Y, XIAO F X. Nanoscale, 2017, 9(43): 16922-16936.

    59. [59]

      PARK J I, NGUYEN T D, DE QUEIRÓS SILVEIRA G, BAHNG J H, SRIVASTAVA S, ZHAO G, SUN K, ZHANG P, GLOTZER S C, KOTOV N. A. Nat. Commun., 2014, 5: 3593.

    60. [60]

      DE Q, SILVEIRA G, RAMESAR N. S, NGUYEN T D, BAHNG J H, GLOTZER S C, KOTOV N A. Chem. Mater., 2019, 31(18): 7493-7500.

    61. [61]

      PATERSON S, THOMPSON S A, GRACIE J, WARKA A W, DE LA RICA R. Chem. Sci., 2016, 7(9): 6232-6237.

    62. [62]

      MAYE M M, LIM I I S, LUO J, RAB Z, RABINOVICH D, LIU T, ZHONG C J. J. Am. Chem. Soc., 2005, 127(5): 1519-1529.

    63. [63]

      SI K J, CHEN Y, SHI Q, CHENG W. Adv. Sci., 2018, 5(1): 1700179.

    64. [64]

      LIU W, TAGAWA M, XIN H L, WANG T, EMAMY H, LI H, YAGER K G, STARR F W, TKACHENKO A V, GANG O. Science, 2016, 351(6273): 582-586.

    65. [65]

      ROGERS W B, SHIH W M, MANOHARAN V N. Nat. Rev. Mater., 2016, 1(3): 16008.

    66. [66]

      TIAN Y, ZHANG Y, WANG T, XIN H L, LI H, GANG O. Nat. Mater., 2016, 15(6): 654-661.

    67. [67]

      LU F, YAGER K G, ZHANG Y, XIN H, GANG O. Nat. Commun., 2015, 6: 6912.

    68. [68]

      CHEN G, GIBSON K J, LIU D, REES H C, LEE J H, XIA W, LIN R, XIN H L, GANG O, WEIZMANN Y. Nat. Mater., 2019, 18(2): 169-174.

    69. [69]

      JONES M R, KOHLSTEDT K L, O’BRIEN M N, WU J, SCHATZ G C, MIRKIN C A. Nano Lett., 2017, 17(9): 5830-5835.

    70. [70]

      CHEN G, WANG S, SONG L, SONG X, DENG Z. Chem. Commun., 2017, 53(70): 9773-9776.

    71. [71]

      RAEESI V, CHOU L Y T, CHAN W C W. Adv. Mater., 2016, 28(38): 8511-8518.

    72. [72]

      LI Z, ZHU Z, LIU W, ZHOU Y, HAN B, GAO Y, TANG Z. J. Am. Chem. Soc., 2012, 134(7): 3322-3325.

    73. [73]

      GUO J, TARDY B L, CHRISTOFFERSON A J, DAI Y, RICHARDSON J J, ZHU W, HU M, JU Y, CUI J, DAGASTINE R R, YAROVSKY I, CARUSO F. Nat. Nanotechnol., 2016, 11(12): 1105-1111.

    74. [74]

      M O N TA N A R E L L A F, A LTA N T Z I S T, Z A N A G A D, R A B O U W F T, B A L S S, B A E S J O U P, VANMAEKELBERGH D, VAN BLAADEREN A. ACS Nano, 2017, 11(9): 9136-9142.

    75. [75]

      CHEN O, RIEDEMANN L, ETOC F, HERRMANN H, COPPEY M, BARCH M, FARRAR C T, ZHAO J, BRUNS O T, WEI H, GUO P, CUI J, JENSEN R, CHEN Y, HARRIS D K, CORDERO J M, WANG Z, JASANOFF A, FUKUMURA D, REIMER R, DAHAN M, JAIN R K, BAWENDI M G. Nat. Commun., 2014, 5: 5093.

    76. [76]

      TRAN M V, SUSUMU K, MEDINTZ I L, ALGAR W R. Anal. Chem., 2019, 91(18): 11963-11971.

    77. [77]

      LI D, ZHANG Y, YANG P, YU M, GUO J, LU J Q, WANG C. ACS Appl. Mater. Interfaces, 2013, 5(23): 12329-12339.

    78. [78]

      KWON N, OH H, KIM R, SINHA A, KIM J, SHIN J, CHON J W M, LIM B. Nano Lett., 2018, 18(9): 5927-5932.

    79. [79]

      WANG B, LI R, GUO G, XIA Y. Chem. Commun., 2020, 56(63): 8996-8999.

    80. [80]

      ZHU H, WANG Y, CHEN C, MA M, ZENG J, LI S, XIA Y, GAO M. ACS Nano, 2017, 11(8): 8273-8281.

    81. [81]

      MAYILO S, HILHORST J, SUSHA A S, HÖHL C, FRANZL T, KLAR T A, ROGACH A L, FELDMANN J. J. Phys. Chem. C, 2008, 112(37): 14589-14594.

    82. [82]

      PRAKASH K T, SINGH N, VENKATESH V. Chem. Commun., 2019, 55(3): 322-325.

    83. [83]

      MOU M, WU Y, NIU Q, WANG Y, YAN Z, LIAO S. Chem. Commun., 2017, 53(23): 3357-3360.

    84. [84]

      ZHU J, HE K, DAI Z, GONG L, ZHOU T, LIANG H, LIU J. Anal. Chem., 2019, 91(13): 8237-8243.

    85. [85]

      LING Y, ZHANG D, CUI X, WEI M, ZHANG T, WANG J, XIAO L, XIA Y. Angew. Chem., Int. Ed, 2019, 58(31): 10542-10546.

    86. [86]

    87. [87]

      YANG F, SKRIPKA A, TABATABAEI M S, HONG S H, REN F, BENAYAS A, OH J K, MARTEL S, LIU X, VETRONE F, MA D. ACS Nano, 2019, 13(1): 408-420.

    88. [88]

      LU J, SUN J, LI F, WANG J, LIU J, KIM D, FAN C, HYEON T, LIN D. J. Am. Chem. Soc., 2018, 140(32): 10071-10074.

    89. [89]

      HU X, LI F, WANG S, XIA F, LING D. Adv. Healthcare Mater. 2018, 7(20): 1800359.

    90. [90]

      LI S, XU L, HAO C, SUN M, WU X, KUANG H, XU C. Angew. Chem., Int. Ed., 2019, 58(52): 19067-19072.

    91. [91]

      XIA H, LI F, HU X, PARK W, WANG S, JANG Y, KIM D H, LING D, HUI K M, HYEON T. ACS Cent. Sci., 2016, 2(11): 802-811.

  • 加载中
    1. [1]

      Renyi ShaoKhurram AbbasVladimir Yu. OsipovHaimei ZhuYuan LiUsamaHong Bi . Red-emitting carbon dots prepared from Epipremnum Aureum leaves extract for biological imaging. Acta Physico-Chimica Sinica, 2026, 42(2): 100134-0. doi: 10.1016/j.actphy.2025.100134

    2. [2]

      Qiang HUZhiqi CHENZhong CHENXu WANGWeina WU . Pyridinium-chalcone-based ClO- fluorescent probe: Preparation and biological imaging applications. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1789-1795. doi: 10.11862/CJIC.20250086

    3. [3]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    4. [4]

      Qiuping Liu Yongxian Fan Wenxian Chen Mengdi Wang Mei Mei Genrong Qiang . Design of Ideological and Political Education for the Preparation Experiment of Ferrous Sulfate. University Chemistry, 2024, 39(2): 116-120. doi: 10.3866/PKU.DXHX202309083

    5. [5]

      Xiaoyu YANGYejun ZHANGYu ZOUHongchao YANGJiang JIANGQiangbin WANG . Research progress of inorganic X-ray nanoscintillators. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1929-1952. doi: 10.11862/CJIC.20250122

    6. [6]

      Jian LiYu ZhangRongrong YanKaiyuan SunXiaoqing LiuZishang LiangYinan JiaoHui BuXin ChenJinjin ZhaoJianlin Shi . Highly Efficient, Targeted, and Traceable Perovskite Nanocrystals for Photoelectrocatalytic Oncotherapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-0. doi: 10.1016/j.actphy.2024.100042

    7. [7]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    8. [8]

      Yufan Pan Xue Ding Jiayu Lin Haiting Wu Hairong Huang Cuixue Chen Meiling Ye . Oil Cosmetics, Charming Chemistry: A Gradient Science Popularization Scheme for Cream Cosmetic Preparation. University Chemistry, 2025, 40(4): 382-389. doi: 10.12461/PKU.DXHX202406078

    9. [9]

      Lingqi Zhang Hairong Huang Jialin Li Li Ji Yufan Pan Meiling Ye Cuixue Chen Shunü Peng . 桂花碳量子点的绿色制备及科普应用方案. University Chemistry, 2025, 40(8): 298-306. doi: 10.12461/PKU.DXHX202409138

    10. [10]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    11. [11]

      Kexin DongChuqi ShenRuyu YanYanping LiuChunqiang ZhuangShijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-0. doi: 10.3866/PKU.WHXB202310013

    12. [12]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    13. [13]

      Mingjie LeiWenting HuKexin LinXiujuan SunHaoshen ZhangYe QianTongyue KangXiulin WuHailong LiaoYuan PanYuwei ZhangDiye WeiPing Gao . Accelerating the reconstruction of NiSe2 by Co/Mn/Mo doping for enhanced urea electrolysis. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-0. doi: 10.1016/j.actphy.2025.100083

    14. [14]

      Jia WangQing QinZhe WangXuhao ZhaoYunfei ChenLiqiang HouShangguo LiuXien Liu . P-Doped Carbon-Supported ZnxPyOz for Efficient Ammonia Electrosynthesis under Ambient Conditions. Acta Physico-Chimica Sinica, 2024, 40(3): 2304044-0. doi: 10.3866/PKU.WHXB202304044

    15. [15]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    16. [16]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    17. [17]

      Ling WANGWeipeng YANZhuoyi ZHENGSihan ZHUMingxian GONGXiangyu MA . Fabrication of biochar-supported nano zero-valent iron and its high-efficiency performance for Cr(Ⅵ) removal from wastewater. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2441-2454. doi: 10.11862/CJIC.20250264

    18. [18]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

    19. [19]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    20. [20]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

Metrics
  • PDF Downloads(0)
  • Abstract views(929)
  • HTML views(135)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return