Citation: JIN Ze-Hui,  MIN Qian-Hao. Advances in Nanomaterials Facilitated Mass Spectrometry Imaging[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(7): 1176-1187. doi: 10.19756/j.issn.0253-3820.211073 shu

Advances in Nanomaterials Facilitated Mass Spectrometry Imaging

  • Corresponding author: MIN Qian-Hao, minqianhao@nju.edu.cn
  • Received Date: 26 January 2021
    Revised Date: 3 April 2021

    Fund Project: Supported by the National Natural Science Foundation of China (Nos. 21622505, 21974062).

  • Diversified composition and tailorable properties of nanomaterials have provided infinite possibilities for the development of mass spectrometric methods. With the blooming innovation of mass spectrometry technology in recent years, researchers have begun to expand the application of nanomaterials-assisted mass spectrometry from mere detection to imaging. By using nanomaterials as matrices for assisting desorption/ionization or carriers of signal molecules, mass spectrometry imaging can not only provide molecular information of unknown compounds, but also achieve accurate profiling of spatial distribution of biomolecules, drugs, environmental pollutants and other target molecules in tissues and even single cells, thus providing a more intuitive means for physiology and pathology study at tissue or cell level. In this review, the main principles and research progress of nanomaterials facilitated mass spectrometry imaging are summarized, and its future development and potential applications are also prospected.
  • 加载中
    1. [1]

    2. [2]

      KARAS M, HILLENKAMP F. Anal. Chem., 1988, 60(20): 2299-2301.

    3. [3]

      CAPRIOLI R M, FARMER T B, GILE J. Anal. Chem., 1997, 69(23): 4751-4760.

    4. [4]

      TANAKA K, WAKI H, IDO Y, AKITA S, YOSHIDA Y, YOSHIDA T, MATSUO T. Rapid Commun. Mass Spectrom., 1988, 2(8): 151-153.

    5. [5]

      SUNNER J, DRATZ E, CHEN Y C. Anal. Chem., 1995, 67(23): 4335-4342.

    6. [6]

      WEI J, BURIAK J M, SIUZDAK G. Nature, 1999, 399(6733): 243-246.

    7. [7]

      NORTHEN T R, YANES O, NORTHEN M T, MARRINUCCI D, URITBOONTHAI W, APON J, GOLLEDGE S L, NORDSTROM A, SIUZDAK G. Nature, 2007, 449(7165): 1033-1036.

    8. [8]

      GUINAN T, DELLA VEDOVA C, KOBUS H, VOELCKER N H. Chem. Commun., 2015, 51(28): 6088-6091.

    9. [9]

      CHEN X M, WANG T, LIN L M, WO F J, LIU Y Q, LIANG X, YE H, WU J M. ACS Appl. Mater. Interfaces, 2018, 10(17): 14389-14398.

    10. [10]

      IAKAB S A, RAFOLS P, TAJES M, CORREIG-BLANCHAR X, GARCIA-ALTARES M. ACS Nano, 2020, 14(6): 6785-6794.

    11. [11]

      RAFOLS P, VILALTA D, TORRES S, CALAVIA R, HEIJS B, MCDONNELL L A, BREZMES J, DEL CASTILLO E, YANES O, RAMIREZ N, CORREIG X. PLoS One, 2018, 13(12): e0208908.

    12. [12]

      PALERMO A, FORSBERG E M, WARTH B, AISPORNA A E, BILLINGS E, KUANG E, BENTON H P, BERRY D, SIUZDAK G. ACS Nano, 2018, 12(7): 6938-6948.

    13. [13]

      LI Y F, LUO P Q, CAO X H, LIU H H, WANG J N, WANG J Y, ZHAN L P, NIE Z X. Chem. Commun., 2019, 55(41): 5769-5772.

    14. [14]

      GUAN M, ZHANG Z, LI S L, LIU J A, LIU L, YANG H, ZHANG Y Y, WANG T, ZHAO Z W. Talanta, 2018, 179: 624-631.

    15. [15]

      HAN C, LI S M, YUE Q W, LI N, YANG H, ZHAO Z W. Analyst, 2019, 144(21): 6304-6312.

    16. [16]

      WU Q, CHU J L, RUBAKHIN S S, GILLETTE M U, SWEEDLER J V. Chem. Sci., 2017, 8: 3926-3938.

    17. [17]

      WU Q, RUBAKHIN S S, SWEEDLER J V. Anal. Chem., 2020, 92(9): 6613-6621.

    18. [18]

      BASU S S, MCMINN M H, GIMENEZ-CASSINA LOPEZ B, REGAN M S, RANDALL E C, CLARK A R, COX C R, AGAR N Y R. Anal. Chem., 2019, 91(10): 6800-6807.

    19. [19]

      WANG Z J, CAI Y, WANG Y, ZHOU X W, ZHANG Y, LU H J. Sci. Rep., 2017, 7: 44466.

    20. [20]

      CHEN S M, XIONG C Q, LIU H H, WAN Q Q, HOU J, HE Q, BADU-TAWIAH A, NIE Z X. Nat. Nanotechnol., 2015, 10(2): 176-182.

    21. [21]

      SHI R, DAI X, LI W F, LU F, LIU Y, QU H H, LI H, CHEN Q Y, TIAN H, WU E H, WANG Y, ZHOU R H, LEE S T, LIFSHITZ Y, KANG Z H, LIU J. ACS Nano, 2017, 11(9): 9500-9513.

    22. [22]

      LIN Z A, WU J, DONG Y Q, XIE P S, ZHANG Y H, CAI Z W. Anal. Chem., 2018, 90(18): 10872-10880.

    23. [23]

      HEEREN R M A. Int. J. Mass spectrom., 2015, 377: 672-680.

    24. [24]

      LIEBL H. J. Appl. Phys., 1967, 38(13): 5277-5283.

    25. [25]

      CHUGHTAI K, HEEREN R M A. Chem. Rev., 2010, 110(5): 3237-3277.

    26. [26]

      MOON D W, PARK Y H, LEE S Y, LIM H, KWAK S, KIM M S, KIM H, KIM E, JUNG Y, HOE H S, KIM S, LIM D K, KIM C H, IN S I. ACS Appl. Mater. Interfaces, 2020, 12(15): 18056-18064.

    27. [27]

      JIA F, WANG J, ZHAO Y, ZHANG Y, LUO Q, QI L, HOU Y, DU J, WANG F. Anal. Chem., 2020, 92(23): 15517-15525.

    28. [28]

      VEITH L, VENNEMANN A, BREITENSTEIN D, ENGELHARD C, WIEMANN M, HAGENHOFF B. Analyst, 2017, 142(14): 2631-2639.

    29. [29]

      HUA X, LI H W, LONG Y T. Anal. Chem., 2018, 90(2): 1072-1076.

    30. [30]

      SEKINE R, MOORE K L, MATZKE M, VALLOTTON P, JIANG H, HUGHES G M, KIRBY J K, DONNER E, GROVENOR C R M, SVENDSEN C, LOMBI E. ACS Nano, 2017, 11(11): 10894-10902.

    31. [31]

      SINGH A V, JUNGNICKEL H, LEIBROCK L, TENTSCHERT J, REICHARDT P, KATZ A, LAUX P, LUCH A. Sci. Rep., 2020, 10: 261.

    32. [32]

      YAN X, ZHAO X A, ZHOU Z P, MCKAY A, BRUNET A, ZARE R N. Anal. Chem., 2020, 92(19): 13281-13289.

    33. [33]

      YIN R, BURNUM-JOHNSON K E, SUN X, DEY S K, LASKIN J. Nat. Protoc., 2019, 14(12): 3445-3470.

    34. [34]

      CHENG Y H, ZHANG Y, CHAU S L, LAI S K, TANG H W, NG K M. ACS Appl. Mater. Interfaces, 2016, 8(43): 29668-29675.

    35. [35]

      HINNERS P, THOMAS M, LEE Y J. Anal. Chem., 2020, 92(4): 3125-3132.

    36. [36]

      SHARIATGORJI M, NILSSON A, FRIDJONSDOTTIR E, VALLIANATOU T, KALLBACK P, KATAN L, SAVMARKER J, MANTAS I, ZHANG X, BEZARD E, SVENNINGSSON P, ODELL L R, ANDREN P E. Nat. Methods, 2019, 16(10): 1021-1028.

    37. [37]

      ZHAO C, XIE P S, YONG T, HUANG W, LIU J J, WU D S, JI F F, LI M, ZHANG D D, LI R J, DONG C, MA J, DONG Z, LIU S J, CAI Z W. Sci. Bull., 2020, 66(6): 578-591.

    38. [38]

      BANERJEE S, ZARE R N, TIBSHIRANI R J, KUNDER C A, NOLLEY R, FAN R, BROOKS J D, SONN G A. Proc. Natl. Acad. Sci. U. S. A., 2017, 114(13): 3334-3339.

    39. [39]

      MARGULIS K, CHIOU A S, AASI S Z, TIBSHIRANI R J, TANG J Y, ZARE R N. Proc. Natl. Acad. Sci. U. S. A., 2018, 115(25): 6347-6352.

    40. [40]

      GIORDANO S, MOROSI L, VEGLIANESE P, LICANDRO S A, FRAPOLLI R, ZUCCHETTI M, CAPPELLETTI G, FALCIOLA L, PIFFERI V, VISENTIN S, D’INCALCI M, DAVOLI E. Sci. Rep., 2016, 6: 37027.

    41. [41]

      SIKORA K N, HARDIE J M, CASTELLANOS-GARCIA L J, LIU Y, REINHARDT B M, FARKAS M E, ROTELLO V M, VACHET R W. Anal. Chem., 2020, 92(2): 2011-2018.

    42. [42]

      XUE J, LIU H, CHEN S, XIONG C, ZHAN L. Sci. Adv., 2018, 4(10): eaat9039.

    43. [43]

      SWALES J G, HAMM G, CLENCH M R, GOODWIN R J A. Int. J. Mass spectrom., 2019, 437: 99-112.

    44. [44]

      MENG Y, CHENG X, WANG T, HANG W, LI X, NIE W, LIU R, LIN Z, HANG L, YIN Z, ZHANG B, YAN X. Angew. Chem., Int. Ed., 2020, 59(41): 17864-17871.

    45. [45]

      PROETTO M T, ANDERTON C R, HU D, SZYMANSKI C J, ZHU Z, PATTERSON J P, KAMMEYER J K, NILEWSKI L G, RUSH A M, BELL N C, EVANS J E, ORR G, HOWELL S B, GIANNESCHI N C. ACS Nano, 2016, 10(4): 4046-4054.

    46. [46]

      PROETTO M T, CALLMANN C E, CLIFF J, SZYMANSKI C J, HU D, HOWELL S B, EVANS J E, ORR G, GIANNESCHI N C. ACS Cent. Sci., 2018, 4(11): 1477-1484.

    47. [47]

      YAN B, KIM S T, KIM C S, SAHA K, MOYANO D F, XING Y Q, JIANG Y, ROBERTS A L, ALFONSO F S, ROTELLO V M, VACHET R W. J. Am. Chem. Soc., 2013, 135(34): 12564-12567.

    48. [48]

      ELCI S G, YESILBAG TONGA G, YAN B, KIM S T, KIM C S, JIANG Y, SAHA K, MOYANO D F, MARSICO A L M, ROTELLO V M, VACHET R W. ACS Nano, 2017, 11(7): 7424-7430.

    49. [49]

      MA W, XU S T, NIE H G, HU B Y, BAI Y, LIU H W. Chem. Sci., 2019, 10(8): 2320-2325.

    50. [50]

      NGUYEN S N, KYLE J E, DAUTEL S E, SONTAG R, LUDERS T, CORLEY R, ANSONG C, CARSON J, LASKIN J. Anal. Chem., 2019, 91(18): 11629-11635.

    51. [51]

      HAMILTON B R, MARSHALL D L, CASEWELL N R, HARRISON R A, BLANKSBY S J, UNDHEIM E A B. Angew. Chem., Int. Ed., 2020, 59(10): 3855-3858.

    52. [52]

      LI H, BALAN P, VERTES A. Angew. Chem., Int. Ed., 2016, 55(48): 15035-15039.

    53. [53]

      CHEN P Y, HSIEH C Y, SHIH C J, LIN Y J, TSAO C W, YANG Y L. J. Nat. Prod., 2018, 81(7): 1527-1533.

    54. [54]

      ZHONG H, ZHANG J, TANG X, ZHANG W, JIANG R, LI R, CHEN D, WANG P, YUAN Z. Nat. Commun., 2017, 8: 14524.

    55. [55]

      AHLF D R, MASYUKO R N, HUMMON A B, BOHN P W. Analyst, 2014, 139(18): 4578-4585.

    56. [56]

      FLETCHER J S, SAMFORS S, VALLIN J, SVANSTROM A, GRANTHAM J. Anal. Bioanal. Chem., 2021, 413(2): 445-453.

    57. [57]

      HARMSEN S, COSKUN A F, GANESH S, NOLAN G P, GAMBHIR S S. Adv. Mater. Technol., 2020, 5(7): 2000098.

    58. [58]

      KIRCHBERGER-TOLSTIK T, RYABCHYKOV O, BOCKLITZ T, DIRSCH O, SETTMACHER U, POPP J, STALLMACH A. Analyst, 2021, 146(4): 1239-1252.

    59. [59]

      LANNI E J, MASYUKO R N, DRISCOLL C M, DUNHAM S J, SHROUT J D, BOHN P W, SWEEDLER J V. Anal. Chem., 2014, 86(21): 10885-10891.

  • 加载中
    1. [1]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    2. [2]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    3. [3]

      Zunyuan Xie Lijin Yang Zixiao Wan Xiaoyu Liu Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137

    4. [4]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    5. [5]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    6. [6]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    7. [7]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    8. [8]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    9. [9]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    10. [10]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    11. [11]

      Jiandong Liu Zhijia Zhang Mikhail Kamenskii Filipp Volkov Svetlana Eliseeva Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048

    12. [12]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    13. [13]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    14. [14]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    15. [15]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    16. [16]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    17. [17]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    18. [18]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    19. [19]

      Feng Lu Tao Wang Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005

    20. [20]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

Metrics
  • PDF Downloads(0)
  • Abstract views(671)
  • HTML views(113)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return