Citation: LIN Chu-Hui,  CHAI Rui-Ping,  ZHANG Lu,  FU Zhi-Bo,  ZHANG Hong-Yang,  ZHANG Min,  HU Ping. Determination of Six Kinds of Bile Acids in NiuhuangJiedu Tablets Using High Performance Liquid Chromatography Coupled with Charged Aerosol Detector[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(5): 764-771. doi: 10.19756/j.issn.0253-3820.210910 shu

Determination of Six Kinds of Bile Acids in NiuhuangJiedu Tablets Using High Performance Liquid Chromatography Coupled with Charged Aerosol Detector

  • Corresponding author: HU Ping, huping@ecust.edu.cn
  • Received Date: 31 December 2021
    Revised Date: 27 February 2022

    Fund Project: Supported by the National Natural Science Foundation of China (No.81973285).

  • A high performance liquid chromatography-charge aerosol detector (HPLC-CAD) method for determination of six kinds of bile acids(Glycocholicacid, hyodeoxycholic acid, cholic acid, glycodeoxycholic acid, chenodeoxycholic acid and deoxycholic acid) in Niuhuang Jiedu tablets was developed. The tablet samples were extracted by ultrasonication in 70% methanol and concentrated under nitrogen flow. The separation of bile acids was achieved on an Agilent Poroshell 120 EC C18 column (4.6 mm × 100 mm, 2.7 μm) with gradient elution using methanol and aqueous solution containing 0.1% formic acid and 5 mmol/L ammonium formate. CAD evaporation temperature was set at 55℃ and the power function value (PFV) was 1.35. The linearity ranges were 2.10-972 μg/mL for glycocholic acid, 2.09-1046 μg/mL for hyodeoxycholic acid, 2.05-978 μg/mL for cholic acid, 2.56-1022 μg/mL for glycodeoxycholic acid, 1.25-658 μg/mL for chenodeoxycholic acid and 2.05-1025 μg/mL for deoxycholic acid, respectively. All relative coefficients (R2) were higher than 0.9991. The limits of detection and the limits of quantitation ranged from 0.86 to 1.53 μg/mL and 1.20 to 2.56 μg/mL, respectively. The average recoveries of six kinds of bile acids were in the range of 94.2%-105.3% with RSD ≤ 1.63%. The method was used to determine the real tablet samples, and the results indicated that the contents of six bile acids had an obvious difference among the Niuhuang Jiedu tablets of different manufacturers. The HPLC-CAD method for the determination of six kinds of bile acids was sensitive, accurate and reliable, which could be applied to evaluate the quality of the Niuhuang Jiedu tablets.
  • 加载中
    1. [1]

    2. [2]

      HU Z, HE L C, ZHANG J, LUO G A.J. Chromatogr. B:Anal. Technol. Biomed. Life Sci., 2006, 837(1-2):11-17.

    3. [3]

    4. [4]

      CHARLES T, ROBERTO P, MARK P, JOHAN A, KRISTINA S. Nat. Rev. Drug Discovery, 2008, 7(8):678-693.

    5. [5]

      YANG F, HE Y Q, LIU H X, TSUEI J, JIANG X Y, YANG L, WANG Z T, WAN Y J Y. Biochem. Pharmacol., 2014, 91(4):483-489.

    6. [6]

      PERINO A, POLS T W H, NOMURA M, STEIN S, PELLICCIARI R, SCHOONJANS K. J. Clin. Invest., 2014, 124(12):5424-36.

    7. [7]

      REITER S, DUNKEL A, DAWID C, HOFMANN T. J. Agric. Food Chem., 2021, 69(36):10572-10580.

    8. [8]

      ASHLEY C J, OMAR G Q, VALERIE S F, PHILIPPE Z, CARMELO Q, LUIGI B, ANNE T, JULIE C, DANIELA F, MARCUS H, CATHERINE P, VINCENT S, CAMILLE A, SANDRINE Q, VALENTINE G, NATHALIE H, ALESSIA P, ALEXIA D, MARLENE M, THIERRY L L, SAMANTHA C, NATHALIE D, ASTRID C, DELPHINE G, BENOIT D, GILLES M, DAVID D, FREDRIK B, VINCENT P, GIOVANNI M, BART S, KRISTINA S, DANIELA C. Cell Metab., 2021, 33(7):1483-1492.

    9. [9]

      BETHAN L C, LESLIE R S, KEVIN J W, PAULINE M, ANGELA C, KELSEY E J, ALVIVN P C, MADELAINE C B S, ANNIKA W, JULIANNE W A, WILLIAM B, JAMES W, ANNA C C, LIU Y Y, ANDERS T, PETER J M, BRIAN G D, JULIA J M, HANNS U M, ELIZABETH J T, PETER A E, THOMAS Q A V. Cell Metab., 2021, 33(8):1671-1684.

    10. [10]

      LUO M M, YAN J B, WU L Y, WU J T, CHEN Z, JIANG J P, CHEN Z Y, HE B H. J. Immunol. Res., 2021, 2021:2264737.

    11. [11]

      WU Y M, WANG X C, WU Q Z, WU X P, LIN X C, XIE Z H. Anal. Methods, 2010, 2(12):1927-1933.

    12. [12]

      SHI Y, XIONG J, SUN D M, LIU W, WEI F, MA S C, LIN R C. J. Sep. Sci., 2015, 38(16):2753-2762.

    13. [13]

      KONG W J, JIN C, LIU W, XIAO X H, ZHAO Y L, LI Z L, ZHANG P, LI X F. Food Chem., 2010, 120(4):1193-1200.

    14. [14]

      XIONG J, ZHENG T J, SHI Y, WEI F, MA S C, HE L, WANG S C, LIU X S. J. Pharm. Biomed. Anal., 2019, 174:50-56.

    15. [15]

      CHEN M J, LIU C, SHEN Y M, ZOU J F, ZHANG Z M, WAN Y, YANG L, JIANG S, QIAN D W, DUAN J N. J. Chromatogr. Sci., 2021, 59(9):871-876.

    16. [16]

    17. [17]

      KAKIYAMA G, MUTO A, TAKEI H, NITTONO H, MURAI T, KUROSA W A T, HOFMANNA F, PANDAK W M, BAJAJJS J. Lipid Res., 2014, 55(5):978-990.

    18. [18]

      ZHENG J P, YE C, HU B F, YANG H B, YAO Q F, MA J, LIU Y, LIU H T. Biotechnol. Appl. Biochem., 2020, 68(6):1332-1341.

    19. [19]

      LIU W X, CHENG X L, GUO X H, HU X R, WEI F, MA S C. Pharm. Biomed. Anal., 2020, 179:1-8.

    20. [20]

      SHAFAEI A, REES J, CHRISTOPHERSEN C T, DEVINE A, BROADHURST D, BOYCE M C. Anal. Chim. Acta, 2021, 1150:1-9.

    21. [21]

      YANG M T, TAN D P, LU A J, QIN L, WANG C H, LING H, LU Y L, HE Y Q. Int. J. Anal. Chem., 2021, 2021:5209618.

    22. [22]

      WU L L, ZHANG S N, ZHOU L H, XIONG H S, GONG X C, ZHANG S J, PAN J Y, QU H B. Phytochem. Anal., 2021, 32(6):942-956.

    23. [23]

      LIU A X, XU T T, YANG W N, ZHOU D D, SHA Y W. J. Anal. Methods Chem., 2021, 2021:6616854.

    24. [24]

      XIE M J, YU Y T, ZHU Z Y, DENG L P, REN B, ZHANG M. J. Pharm. Biomed. Anal., 2021, 201:114087.

    25. [25]

      XU X Y, WANG S M, WANG H M, HU W D, HAN L F, CHEN B X, LI X, WANG H D, LI H F, GAO X M, GUO D, YANG W Z. J. Chromatogr. A, 2021, 1655:462504.

    26. [26]

      XIE Q, TIAN H M, HUAN X H, CAO L L, WANG Y, CHENG X M, NING C G, HU F D, WANG C H. Phytochem. Anal., 2022, 33:262-271.

    27. [27]

      NGUYEN H T, VU-HUYNH K L, NGUYEN H M, LE H T, LE T H V, PARK J L, NGUYEN M D. Molecules, 2021, 26(17):5373.

    28. [28]

      WANG C, CHAO I C, QIN Y, ZHANG W X, ZHAO J, ZHANG Q W. J. Pharm. Biomed. Anal., 2022, 210:114545.

    29. [29]

      VERTZONI M, ARCHONTAKI H, REPPAS C. J. Lipid Res., 2008, 49(12):2690-2695.

    30. [30]

    31. [31]

      PAWELLEK R, MUELLNER T, GAMACHE P, HOLZGRABE U. J.Chromatogr. A, 2021, 1637:461844.

    32. [32]

      GAMACHE P H. Charged Aerosol Detection for Liquid Chromatography and Related Separation Techniques. New Jersey:John Wiley & Sons, 2017.

    33. [33]

      AHMAD I A H, BLASKO A, WANG H, LU T, MANGION I, REGALADO E L. J. Chromatogr. A, 2021, 1641:461997.

    34. [34]

  • 加载中
    1. [1]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    2. [2]

      Siming Bian Sijie Luo Junjie Ou . Application of van Deemter Equation in Instrumental Analysis Teaching: A New Type of Core-Shell Stationary Phase. University Chemistry, 2025, 40(3): 381-386. doi: 10.12461/PKU.DXHX202406087

    3. [3]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    4. [4]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    5. [5]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    6. [6]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    7. [7]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    8. [8]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    9. [9]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    10. [10]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    11. [11]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    12. [12]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    13. [13]

      Qingying Gao Tao Luo Jianyuan Su Chaofan Yu Jiazhu Li Bingfei Yan Wenzuo Li Zhen Zhang Yi Liu . Refinement and Expansion of the Classic Cinnamic Acid Synthesis Experiment. University Chemistry, 2024, 39(5): 243-250. doi: 10.3866/PKU.DXHX202311074

    14. [14]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    15. [15]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    16. [16]

      Meijin Li Xirong Fu Xue Zheng Yuhan Liu Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027

    17. [17]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

    18. [18]

      Yutong Dong Huiling Xu Yucheng Zhao Zexin Zhang Ying Wang . The Hidden World of Surface Tension and Droplets. University Chemistry, 2024, 39(6): 357-365. doi: 10.3866/PKU.DXHX202312022

    19. [19]

      Gaoyan Chen Chaoyue Wang Juanjuan Gao Junke Wang Yingxiao Zong Kin Shing Chan . Heart to Heart: Exploring Cardiac CT. University Chemistry, 2024, 39(9): 146-150. doi: 10.12461/PKU.DXHX202402011

    20. [20]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

Metrics
  • PDF Downloads(13)
  • Abstract views(679)
  • HTML views(143)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return