Citation: QIN Yu-Chen,  XU Jing-Yi,  KANG Meng-Xin,  ZHAO Chao,  LIU Hong. Nonenzymatic Detection of Glucose in Sweat Based on Electrodeposited Microelectrodes[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(11): 1750-1755. doi: 10.19756/j.issn.0253-3820.210907 shu

Nonenzymatic Detection of Glucose in Sweat Based on Electrodeposited Microelectrodes

  • Corresponding author: ZHAO Chao,  LIU Hong, 
  • Received Date: 28 December 2021
    Revised Date: 24 February 2022

    Fund Project: Supported by the National Natural Science Foundation of China (No.21635001) and the Key Project and Open Research Fund of State Key Laboratory of Bioelectronics, Southeast University.

  • Comparing with evaporation, sputtering and other methods, electrodeposition is much cheaper and more convenient in the field of fabricating thin film electrodes, which are versatile to various sensor platforms. In this work, a three-microelectrode system electrodeposited on printed circuit boards was developed, by which the electrode could be directly connected to external detection circuits. The electrodeposited three-electrode system consisted of a gold electrode (working electrode), a platinum electrode (counter electrode) and a Ag/AgCl electrode (reference electrode). The size of a single electrode was 0.5 mm × 0.7 mm, by which the amount of sample required for a single test was only 10-20 μL. When connected to external circuits, the three-microelectrode system could conduct a rapid, quantitative and nonenzymatic detection of glucose in artificial sweat (pH 4.7) by multipotential step and chronoamperometry with a linear range of 50-500 μmol/L and a detection limit of 20 μmol/L.
  • 加载中
    1. [1]

      MOYER J, WILSON D, FINKELSHTEIN I, WONG B, POTTS R. Diabetes Technol. Ther., 2012, 14(5):398-402.

    2. [2]

      BANDODKAR A J, JEERAPAN I, WANG J. ACS Sens., 2016, 1(5):464-482.

    3. [3]

      OLIVER N S, TOUMAZOU C, CASS A E G, JOHNSTON D G. Diabetic Med., 2009, 26(3):197-210.

    4. [4]

      MCCAUL M, GLENNON T, DIAMOND D. Curr. Opin. Electrochem., 2017, 3(1):46-50.

    5. [5]

      WEI G, SAM E, HNIN Y Y N, SAMYUKTHA C, KEVIN C, AUSTIN P, HOSSAIN M F, HIROKI O, HIROSHI S, DAISUKE K, DER-HSIEN L, GEORGE A B, RONALD W D, ALI J. Nature, 2016, 529(7587):509-514.

    6. [6]

      YE M L, XU B, ZHANG W D. Microchim.Acta, 2011, 172(3-4):439-446.

    7. [7]

      METTERS J P, KADARA R O, BANKS C E. Analyst, 2012, 137(4):896-902.

    8. [8]

      SHU H H, CAO L L, CHANG G, HE H P, ZHANG Y T, HE Y B. Electrochim. Acta, 2014, 132:524-532.

    9. [9]

      CHEN L Y, TANG Y H, WANG K, LIU C B, LUO S L. Electrochem. Commun., 2011, 13(2):133-137.

    10. [10]

      ZHOU X C, ZHENG X Y, LV R X, KONG D X, LI Q L. Electrochim. Acta, 2013, 107:164-169.

    11. [11]

      HE C H, WANG J K, GAO N, HE H P, ZOU K L, MA M Y, ZHOU Y, CAI Z W, CHANG G, HE Y B. Microchim. Acta, 2019, 186(11):722-730.

    12. [12]

      KANNAN P K, HU C X, MORGAN H, ROUT C S. Chem.-Asian J., 2016, 11(12):1837-1841.

    13. [13]

      RAO M L B, DRAKE R F. J. Electrochem. Soc., 1969, 116(3):334-337.

    14. [14]

      JENSEN M B, JOHNSON D C. Anal. Chem., 1997, 69(9):1776-1781.

    15. [15]

      QIU H J, HUANG X R. J. Electroanal. Chem., 2010, 643(1-2):39-45.

    16. [16]

    17. [17]

      SHU H H, CHANG G, SU J, CAO L, HUANG Q, ZHANG Y, XIA T, HE Y B. Sens. Actuators, B, 2015, 220:331-339.

    18. [18]

      CHANG G, SHU H, JI K, OYAMA M, LIU X, HE Y. Appl. Surf. Sci., 2014, 288:524-529.

    19. [19]

      LEE Y J, PARK J Y. Sens. Actuators, B, 2011, 155(1):134-139.

  • 加载中
    1. [1]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    2. [2]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    3. [3]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    4. [4]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    5. [5]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    6. [6]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    7. [7]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    8. [8]

      Yu'ang Liu Yuechao Wu Junyu Huang Tao Wang Xiaohong Liu Tianying Yan . Computation of Absolute Electrode Potential of Standard Hydrogen Electrode Using Ab Initio Method. University Chemistry, 2025, 40(3): 215-222. doi: 10.12461/PKU.DXHX202407112

    9. [9]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    10. [10]

      Fengmiao Yu Yang Sheng Chanyue Li Bao Li . The Three Lives of Aspirin. University Chemistry, 2024, 39(9): 115-121. doi: 10.12461/PKU.DXHX202402033

    11. [11]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    12. [12]

      Xueting Cao Shuangshuang Cha Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041

    13. [13]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    14. [14]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    15. [15]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    16. [16]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    17. [17]

      Yiling Wu Peiyao Jin Shenyue Tian Ji Zhang . The Star of Sugar Substitutes: An Interview of Erythritol. University Chemistry, 2024, 39(9): 22-27. doi: 10.12461/PKU.DXHX202404034

    18. [18]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    19. [19]

      Mingxin LULiyang ZHOUXiaoyu XUXiaoying FENGHui WANGBin YANJie XUChao CHENHui MEIFeng GAO . Preparation of La-doped lead-based piezoelectric ceramics with both high electrical strain and Curie temperature. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 329-338. doi: 10.11862/CJIC.20240206

    20. [20]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

Metrics
  • PDF Downloads(24)
  • Abstract views(834)
  • HTML views(126)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return