Citation: QIN Yu-Chen,  XU Jing-Yi,  KANG Meng-Xin,  ZHAO Chao,  LIU Hong. Nonenzymatic Detection of Glucose in Sweat Based on Electrodeposited Microelectrodes[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(11): 1750-1755. doi: 10.19756/j.issn.0253-3820.210907 shu

Nonenzymatic Detection of Glucose in Sweat Based on Electrodeposited Microelectrodes

  • Corresponding author: ZHAO Chao,  LIU Hong, 
  • Received Date: 28 December 2021
    Revised Date: 24 February 2022

    Fund Project: Supported by the National Natural Science Foundation of China (No.21635001) and the Key Project and Open Research Fund of State Key Laboratory of Bioelectronics, Southeast University.

  • Comparing with evaporation, sputtering and other methods, electrodeposition is much cheaper and more convenient in the field of fabricating thin film electrodes, which are versatile to various sensor platforms. In this work, a three-microelectrode system electrodeposited on printed circuit boards was developed, by which the electrode could be directly connected to external detection circuits. The electrodeposited three-electrode system consisted of a gold electrode (working electrode), a platinum electrode (counter electrode) and a Ag/AgCl electrode (reference electrode). The size of a single electrode was 0.5 mm × 0.7 mm, by which the amount of sample required for a single test was only 10-20 μL. When connected to external circuits, the three-microelectrode system could conduct a rapid, quantitative and nonenzymatic detection of glucose in artificial sweat (pH 4.7) by multipotential step and chronoamperometry with a linear range of 50-500 μmol/L and a detection limit of 20 μmol/L.
  • 加载中
    1. [1]

      MOYER J, WILSON D, FINKELSHTEIN I, WONG B, POTTS R. Diabetes Technol. Ther., 2012, 14(5):398-402.

    2. [2]

      BANDODKAR A J, JEERAPAN I, WANG J. ACS Sens., 2016, 1(5):464-482.

    3. [3]

      OLIVER N S, TOUMAZOU C, CASS A E G, JOHNSTON D G. Diabetic Med., 2009, 26(3):197-210.

    4. [4]

      MCCAUL M, GLENNON T, DIAMOND D. Curr. Opin. Electrochem., 2017, 3(1):46-50.

    5. [5]

      WEI G, SAM E, HNIN Y Y N, SAMYUKTHA C, KEVIN C, AUSTIN P, HOSSAIN M F, HIROKI O, HIROSHI S, DAISUKE K, DER-HSIEN L, GEORGE A B, RONALD W D, ALI J. Nature, 2016, 529(7587):509-514.

    6. [6]

      YE M L, XU B, ZHANG W D. Microchim.Acta, 2011, 172(3-4):439-446.

    7. [7]

      METTERS J P, KADARA R O, BANKS C E. Analyst, 2012, 137(4):896-902.

    8. [8]

      SHU H H, CAO L L, CHANG G, HE H P, ZHANG Y T, HE Y B. Electrochim. Acta, 2014, 132:524-532.

    9. [9]

      CHEN L Y, TANG Y H, WANG K, LIU C B, LUO S L. Electrochem. Commun., 2011, 13(2):133-137.

    10. [10]

      ZHOU X C, ZHENG X Y, LV R X, KONG D X, LI Q L. Electrochim. Acta, 2013, 107:164-169.

    11. [11]

      HE C H, WANG J K, GAO N, HE H P, ZOU K L, MA M Y, ZHOU Y, CAI Z W, CHANG G, HE Y B. Microchim. Acta, 2019, 186(11):722-730.

    12. [12]

      KANNAN P K, HU C X, MORGAN H, ROUT C S. Chem.-Asian J., 2016, 11(12):1837-1841.

    13. [13]

      RAO M L B, DRAKE R F. J. Electrochem. Soc., 1969, 116(3):334-337.

    14. [14]

      JENSEN M B, JOHNSON D C. Anal. Chem., 1997, 69(9):1776-1781.

    15. [15]

      QIU H J, HUANG X R. J. Electroanal. Chem., 2010, 643(1-2):39-45.

    16. [16]

    17. [17]

      SHU H H, CHANG G, SU J, CAO L, HUANG Q, ZHANG Y, XIA T, HE Y B. Sens. Actuators, B, 2015, 220:331-339.

    18. [18]

      CHANG G, SHU H, JI K, OYAMA M, LIU X, HE Y. Appl. Surf. Sci., 2014, 288:524-529.

    19. [19]

      LEE Y J, PARK J Y. Sens. Actuators, B, 2011, 155(1):134-139.

  • 加载中
    1. [1]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    2. [2]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    3. [3]

      Pengli GUANRenhu BAIXiuling SUNBin LIU . Trianiline-derived aggregation-induced emission luminogen probe for lipase detection and cell imaging. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1817-1826. doi: 10.11862/CJIC.20250058

    4. [4]

      Bin SUNHeyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428

    5. [5]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    6. [6]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    7. [7]

      Cun WANGShaohan XUYuqian ZHANGYaoyao ZHANGTao GONGRong WENYuhang LIAOYanrong REN . Terbium complex electrochemiluminescent emitters: Synthesis and application in the detection of epinephrine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1351-1360. doi: 10.11862/CJIC.20240427

    8. [8]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    9. [9]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    10. [10]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    11. [11]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    12. [12]

      Xiaoyong ZHAIYao KOUPingru SUYu TANG . Lanthanide metal-organic framework with msw topology: Synthesis and the application in 2, 4, 6-trinitrophenol detection. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2087-2094. doi: 10.11862/CJIC.20250182

    13. [13]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

    14. [14]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    15. [15]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    16. [16]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    17. [17]

      Yuanchun Pan Xinyun Lin Leyi Yang Wenya Hu Dekui Song Nan Liu . Artificial Intelligence Science Practice: Preparation of Electronic Skin by Chemical Vapor Deposition of Graphene. University Chemistry, 2025, 40(11): 272-280. doi: 10.12461/PKU.DXHX202412052

    18. [18]

      Fengmiao Yu Yang Sheng Chanyue Li Bao Li . The Three Lives of Aspirin. University Chemistry, 2024, 39(9): 115-121. doi: 10.12461/PKU.DXHX202402033

    19. [19]

      Yu'ang Liu Yuechao Wu Junyu Huang Tao Wang Xiaohong Liu Tianying Yan . Computation of Absolute Electrode Potential of Standard Hydrogen Electrode Using Ab Initio Method. University Chemistry, 2025, 40(3): 215-222. doi: 10.12461/PKU.DXHX202407112

    20. [20]

      Limin Zhang Mengmeng Liu Yang Tian . Size Determines Performance: A Novel Experimental Design for Voltammetric Teaching at Microelectrode and Glassy Carbon Electrode. University Chemistry, 2025, 40(11): 281-288. doi: 10.12461/PKU.DXHX202412047

Metrics
  • PDF Downloads(33)
  • Abstract views(1323)
  • HTML views(171)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return