Citation: SONG Lu,  ZUO Xiao-Lei,  LI Min. Research on Flexible Wearable Sensors and Their Applications[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(11): 1661-1672. doi: 10.19756/j.issn.0253-3820.210905 shu

Research on Flexible Wearable Sensors and Their Applications

  • Corresponding author: LI Min, mlisinap@163.com
  • Received Date: 14 December 2021
    Revised Date: 16 February 2022

    Fund Project: Supported by the National Key Research and Development Program of China (No.2020YFA0909000) and the National Natural Science Foundation of China (Nos.22025404, 21904086).

  • Wearable sensors can fit human skin or integrate with textiles to monitor the physiological environment of human body with high sensitivity and integration. In recent years, wearable sensors have been widely used in monitoring sweat, breathing, heart rate and blood oxygen and other physiological parameters. However, wearable sensors should be attached to skin with well comfortability. Also, they should be avoided bringing negative results when people participate activities. Consequently, flexibility is an important parameter for evaluating and improving the performances of wearable sensors. In this review, the development of different flexible materials was summarized. Besides, the construction and application of wearable sensors based on different flexible materials were also discussed. Additionally, the current challenges, coping strategies and development direction of these flexible wearable sensors were discussed.
  • 加载中
    1. [1]

      KIM J, CAMPBELL A S, DEAVILA B E, WANG J. Nat. Biotechnol., 2019, 37(4):389-406.

    2. [2]

      KHAN Y, OSTFELD A E, LOCHNER C M, PIERRE A, ARIAS A C. Adv. Mater., 2016, 28(22):4373-4395.

    3. [3]

      O'NEILL S J K, GONG H X, MATSUHISA N, CHEN S C, MOON H, WU H C, CHEN X F, CHEN X D, BAO Z N. Adv. Mater. Interfaces, 2020, 7(18):2000875.

    4. [4]

      BOUTRY C M, NEGRE M, JORDA M, VARDOULIS O, CHORTOS A, KHATIB O, BAO Z N. Sci. Robot., 2018, 3(24):eaau6914.

    5. [5]

      YOU I, MACKANIC D G, MATSUHISA N, KANG J, KWON J, BEKER L, MUN J, SUH W, KIM T Y, TOK J B H, BAO Z N, JEONG U. Science, 2020, 370(6519):961-965.

    6. [6]

      CHEN Y H, LU S Y, ZHANG S S, LI Y, QU Z, CHEN Y, LU B W, WANG X Y, FENG X. Sci. Adv., 2017, 3(12):e1701629.

    7. [7]

      BARIYA M, NYEIN H Y Y, JAVEY A. Nat. Electron., 2018, 1(3):160-171.

    8. [8]

      LI M M, CHEN X, LI X T, DONG J, ZHAO X, ZHANG Q H. ACS Appl. Mater. Interfaces, 2021, 13(36):43323-43332.

    9. [9]

      LIAO M H, LIAO H, YE J J, WAN P B, ZHANG L Q. ACS Appl. Mater. Interfaces, 2019, 11(50):47358-47364.

    10. [10]

      XU Z Y, SONG J Y, LIU B R, LV S P, GAO F X, LUO X L, WANG P P. Sens. Actuators, B, 2021, 348:130674.

    11. [11]

      MAMUN M A A,YUCE M R. Adv. Funct. Mater., 2020, 30(51):2005703.

    12. [12]

      ZHU H T, ZHAN L W, DAI Q, XU B, CHEN Y, LU Y Q, XU F. Adv. Opt. Mater., 2021, 9(11):2002206.

    13. [13]

      ROGERS J A, SOMEYA T, HUANG Y G. Science, 2010, 327(5973):1603-1607.

    14. [14]

      LI J, DAI J B, JIANG S X, XIE M, ZHAI T T, GUO L J, CAO S T, XING S, QU Z B, ZHAO Y, WANG F, YANG Y, LIU L, ZUO X L, WANG L H, YAN H, FAN C H. Nat. Commun., 2020, 11(1):2185.

    15. [15]

      YAN Q L, KONG H T, XIA K, ZHANG Y, ALADLBAHI A, SHI J Y, WANG L H, FAN C H, ZHAO Y, ZHU Y. Nucl. Sci. Tech., 2017, 28:11.

    16. [16]

      SHEN J L, TANG Q, LI L, LI J, ZUO X L, QU X M, PEI H, WANG L H, FAN C H. Angew. Chem., Int. Ed., 2017, 56(50):16077-16081.

    17. [17]

      KWON P S, REN S K, KWON S J, KIZER M E, KUO L L, XIE M, ZHU D, ZHOU F, ZHANG F M, KIM D, FRASER K, KRAMER L D, SEEMAN N C, DORDICK J S, LINHARDT R J, CHAO J, WANG X. Nat. Chem., 2020, 12(1):26-35.

    18. [18]

      HUANG Q L, CHEN B, SHEN J L, LIU L, LI J J, SHI J Y, LI Q, ZUO X L, WANG L H, FAN C H, LI J. J. Am. Chem. Soc., 2021, 143(28):10735-10742.

    19. [19]

      YAO G B, ZHANG F, WANG F, PENG T H, LIU H, POPPLETON E, SULC P, JIANG S X, LIU L, GONG C, JING X X, LIU X G, WANG L H, LIU Y, FAN C H, YAN H. Nat. Chem., 2020, 12(11):1067-1075.

    20. [20]

      LI M, DING H M, LIN M H, YIN F F, SONG L, MAO X H, LI F, GE Z L, WANG L H, ZUO X L, MA Y Q, FAN C H. J. Am. Chem. Soc., 2019, 141(47):18910-18915.

    21. [21]

      UZUMCU A T, GUNEY O, OKAY O. ACS Appl. Mater. Interfaces, 2018, 10(9):8296-8306.

    22. [22]

      LU S S, WANG S, ZHAO J H, SUN J, YANG X R. Chem. Commun., 2018, 54(36):4621-4624.

    23. [23]

      JIANG C, LI Y S, WANG H, CHEN D S, WEN Y Q. Sens. Actuators, B, 2020, 307:127625.

    24. [24]

      ZHOU X, LI C, SHAO Y, CHEN C, YANG Z Q, LIU D S. Chem. Commun., 2016, 52(70):10668-10671.

    25. [25]

      YUE L, WANG S, WULF V, WILLNER I. Nat. Commun., 2019, 10:4774.

    26. [26]

      CHEN X Q, LISI F, BAKTHAVATHSALAM P, LONGATTE G, HOQUE S, TILLEY R D, GOODING J J. ACS Sens., 2021, 6(2):538-545.

    27. [27]

      FAN C H, WANG S, SCHANZE K, FERNANDEZ L E. ACS Appl. Mater. Interfaces, 2021, 13(8):9289-9290.

    28. [28]

      DUNN M R, JIMENEZ R M, CHAPUT J C. Nat. Rev. Chem., 2017, 1(10):0076.

    29. [29]

      YE D K, LI M, ZHAI T T, SONG P, SONG L, WANG H, MAO X H, WANG F, ZHANG X L, GE Z L, SHI J Y, WANG L H, FAN C H, LI Q, ZUO X L. Nat. Protoc., 2020, 15(7):2163-2185.

    30. [30]

      SONG P, YE D K, ZUO X L, LI J, WANG J B, LIU H J, HWANG M T, CHAO J, SU S, WANG L H, SHI J Y, WANG L H, HUANG W, LAL R, FAN C H. Nano Lett., 2017, 17(9):5193-5198.

    31. [31]

      XIAO M S, LAI W, WANG F, LI L, FAN C H, PEI H. J. Am. Chem. Soc., 2019, 141(51):20354-20364.

    32. [32]

      YANG D Y, HARTMAN M R, DERRIEN T L, HAMADA S, AN D, YANCEY K G, CHENG R, MA M L, LUO D. Acc. Chem. Res., 2014, 47(6):1902-1911.

    33. [33]

      PARK N, UM S H, FUNABASHI H, XU J F, LUO D. Nat. Mater., 2009, 8(5):432-437.

    34. [34]

      NOLL T, WENDERHOLD-REEB S, SCHONHERR H, NOLL G. Angew. Chem., Int. Ed., 2017, 56(39):12004-12008.

    35. [35]

      WANG Y, LI S S, YANG H Y, LUO J. RSC Adv., 2020, 10(26):15328-15345.

    36. [36]

      YIN F, HU J C, HONG Z L, WANG H, LIU G, SHEN J, WANG H L, ZHANG K Q. RSC Adv., 2020, 10(10):5722-5733.

    37. [37]

      ZHONG Y X, ZHANG X, HE Y, PENG H F, WANG G K, XIN G Q. Adv. Funct. Mater., 2018, 28(28):1801998.

    38. [38]

      ZHANG L, DEARMOND D, ALVAREZ N T, MALIK R, OSLIN N, MCCONNELL C, ADUSEI P K, HSIEH Y Y, SHANOV V. Small, 2017, 13(10):1603114.

    39. [39]

      ROY S, DAVID-PUR M, HANEIN Y. ACS Appl. Mater. Interfaces, 2017, 9(40):35169-35177.

    40. [40]

      POLAT E O, MERCIER G, NIKITSKIY I, PUMA E, GALAN T, GUPTA S, MONTAGUT M, PIQUERAS J J, BOUWENS M, DURDURAN T, KONSTANTATOS G, GOOSSENS S, KOPPENS F. Sci. Adv., 2019, 5(9):eaaw7846.

    41. [41]

      CHOI S J, YU H, JANG J S, KIM M H, KIM S J, JEONG H S, KIM I D. Small, 2018, 14(13):1703934.

    42. [42]

      REN H Y, ZHENG L M, WANG G R, GAO X, TAN Z J, SHAN J Y, CUI L Z, LI K, JIAN M Q, ZHU L C, ZHANG Y Y, PENG H L, WEI D, LIU Z F. ACS Nano, 2019, 13(5):5541-5548.

    43. [43]

      ROY S, DAVID-PUR M, HANEIN Y. ACS Appl. Mater. Interfaces, 2017, 9(40):35169-35177.

    44. [44]

      JING C F, LIU W H, HAO H L, WANG H G, MENG F B, LAU D. Nanoscale, 2020, 12(30):16305-16314.

    45. [45]

      PAUL S J, ELIZABETH I, GUPTA B K. ACS Appl. Mater. Interfaces, 2021, 13(7):8871-8879.

    46. [46]

      CHOI J, JUNG Y, DUN C C, PARK K T, GORDON M P, HAAS K, YUAN P Y, KIM H, PARK C R, URBAN J J. ACS Appl. Energy Mater., 2020, 3(1):1199-1206.

    47. [47]

      YIN F Q, LU H J, PAN H, JI H J, PEI S, LIU H, HUANG J Y, GU J H, LI M Y, WEI J. Sci. Rep., 2019, 9:2403.

    48. [48]

      ZHAO Y, NAKAJIMA T, YANG J J, KUROKAWA T, LIU J, LU J S, MIZUMOTO S, SUGAHARA K, KITAMURA N, YASUDA K, DANIELS A U, GONG J P. Adv. Mater., 2014, 26(3):436-442.

    49. [49]

      MING Z Z, PANG Y, LIU J Y. Adv. Mater., 2020, 32(8):1906870.

    50. [50]

      ZENG X W, WANG Z X, ZHANG H, YANG W, XIANG L, ZHAO Z Z, PENG L M, HU Y F. ACS Appl. Mater. Interfaces, 2019, 11(23):21218-21226.

    51. [51]

      WU Y Y, MECHAEL S S, CHEN Y T, CARMICHAEL T B. ACS Appl. Mater. Interfaces, 2020, 12(46):51679-51687.

    52. [52]

      LIU H B, JIANG H, DU F, ZHANG D P, LI Z J, ZHOU H W. ACS Sustainable Chem. Eng., 2017, 5(11):10538-10543.

    53. [53]

      WANG S Q, WU Y J, GU Y, LI T, LUO H, LI L H, BAI Y Y, LI L L, LIU L, CAO Y D, DING H Y, ZHANG T. Anal. Chem., 2017, 89(19):10224-10231.

    54. [54]

      YUAN Z, HOU L, BARIYA M, NYEIN H Y Y, TAI L C, JI W B, LI L, JAVEY A. Lab Chip, 2019, 19(19):3179-3189.

    55. [55]

      NYEIN H Y Y, BARIYA M, TRAN B, AHN C H, BROWN B J, JI W, DAVIS N, JAVEY A. Nat. Commun., 2021, 12(1):1823.

    56. [56]

      WEI X F, TIAN T, JIA S S, ZHU Z, MA Y L, SUN J J, LIN Z Y, YANG C Y. Anal. Chem., 2015, 87(8):4275-4282.

    57. [57]

      MOU L, XIA Y, JIANG X Y. Anal. Chem., 2021, 93(33):11525-11531.

    58. [58]

      ZHU J, LIU S B, HU Z H, ZHANG X Z, YI N, TANG K R, DEXHEIMER M G, LIAN X J, WANG Q, YANG J, GRAY J, CHENG H Y. Biosens. Bioelectron., 2021, 193:113606.

    59. [59]

      GAO W, EMAMINEJAD S, NYEIN H Y Y, CHALLA S, CHEN K, PECK A, FAHAD H M, OTA H, SHIRAKI H, KIRIYA D, LIEN D H, BROOKS G A, DAVIS R W, JAVEY A. Nature, 2016, 529(7587):509-514.

    60. [60]

      SEMPIONATTO J R, LIN M Y, YIN L, DE LA PAZ E, PEI K, SONSA-ARD T, SILVA A N D, KHORSHED A A, ZHANG F Y, TOSTADO N, XU S, WANG J. Nat. Biomed. Eng., 2021, 5(7):737-748.

    61. [61]

      ZHU Z, WU C C, LIU H P, ZOU Y, ZHANG X L, KUANG H Z, YANG C Y, TAN W H. Angew. Chem., Int. Ed., 2010, 49(6):1052-1056.

    62. [62]

      KIM J, KIM M, LEE M S, KIM K, JI S, KIM Y T, PARK J, NA K, BAE K H, KIM H K, BIEN F, LEE C Y, PARK J U. Nat. Commun., 2017, 8:14997.

    63. [63]

      SHEN S, XIAO X, XIAO X, CHEN J. Chem. Commun., 2021, 57(48):5871-5879.

    64. [64]

      KWAK Y H, KIM W, PARK K B, KIM K, SEO S. Biosens. Bioelectron., 2017, 94:250-255.

    65. [65]

      TAKEI K, HONDA W, HARADA S, ARIE T, AKITA S. Adv. Healthc. Mater., 2015, 4(4):487-500.

    66. [66]

      WANG C H, QI B Y, LIN M Y, ZHANG Z R, MAKIHATA M, LIU B Y, ZHOU S, HUANG Y H, HU H J, GU Y, CHEN Y M, LEI Y S, LEE T, CHIEN S, JANG K I, KISTLER E B, XU S. Nat. Biomed. Eng., 2021, 5:749-758.

    67. [67]

      CHANG H, KIM S, KANG T H, LEE S W, YANG G T, LEE K Y, YI H. ACS Appl. Mater. Interfaces, 2019, 11(35):32291-32300.

    68. [68]

      KIREEV D, AMERI S K, NEDERVELD A, KAMPFE J, JANG H, LU N, AKINWANDE D. Nat. Protoc., 2021, 16(5):2395-2417.

  • 加载中
    1. [1]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    2. [2]

      Ke ZhaoZhen LiuLuyao LiuChangyuan YuJingshun PanXuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029

    3. [3]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    4. [4]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    5. [5]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-0. doi: 10.3866/PKU.WHXB202310046

    6. [6]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    7. [7]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    8. [8]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    9. [9]

      Weijie Yang Mansheng Chen Chen Xu Fujian Xu . Hydroxyl-Rich Polycations: Innovative Materials Empowering Life and Health. University Chemistry, 2025, 40(9): 332-343. doi: 10.12461/PKU.DXHX202410072

    10. [10]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    11. [11]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    12. [12]

      Yuyao WangZhitao CaoZeyu DuXinxin CaoShuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-0. doi: 10.3866/PKU.WHXB202406014

    13. [13]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    14. [14]

      Zilin HuYaoshen NiuXiaohui RongYongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005

    15. [15]

      Lin′an CAODengyue MAGang XU . Research advances in electrically conductive metal-organic frameworks-based electrochemical sensors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1953-1972. doi: 10.11862/CJIC.20250160

    16. [16]

      Xingchao ZhaoXiaoming LiMing LiuZijin ZhaoKaixuan YangPengtian LiuHaolan ZhangJintai LiXiaoling MaQi YaoYanming SunFujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021

    17. [17]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    18. [18]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    19. [19]

      Zeqiu ChenLimiao CaiJie GuanZhanyang LiHao WangYaoguang GuoXingtao XuLikun Pan . Advanced electrode materials in capacitive deionization for efficient lithium extraction. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-0. doi: 10.1016/j.actphy.2025.100089

    20. [20]

      Doudou QinJunyang DingChu LiangQian LiuLigang FengYang LuoGuangzhi HuJun LuoXijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-0. doi: 10.3866/PKU.WHXB202310034

Metrics
  • PDF Downloads(87)
  • Abstract views(2655)
  • HTML views(340)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return