基于贵金属纳米复合材料的表面增强拉曼散射活性基底的构建及其应用进展

林丙永 王悦靓 林振宇 郭隆华

引用本文: 林丙永, 王悦靓, 林振宇, 郭隆华. 基于贵金属纳米复合材料的表面增强拉曼散射活性基底的构建及其应用进展[J]. 分析化学, 2022, 50(5): 653-665. doi: 10.19756/j.issn.0253-3820.210897 shu
Citation:  LIN Bing-Yong,  WANG Yue-Liang,  LIN Zhen-Yu,  GUO Long-Hua. Fabrication and Application of Noble Metal Nanocomposites-Based Surface-Enhanced Raman Scattering Active Substrate[J]. Chinese Journal of Analytical Chemistry, 2022, 50(5): 653-665. doi: 10.19756/j.issn.0253-3820.210897 shu

基于贵金属纳米复合材料的表面增强拉曼散射活性基底的构建及其应用进展

    通讯作者: 王悦靓,E-mail:yuel@zjxu.edu.cn; 郭隆华,E-mail:guolh@fzu.edu.cn
  • 基金项目:

    国家自然科学基金项目(No.22074054)、浙江省重点研发计划项目(No.2020C02022)、浙江省自然科学基金项目(Nos.LQ20B050002,LQ20B050004)和浙江省"万人计划"科技创新领军人才项目(No.2021R52044)资助。

摘要: 表面增强拉曼散射(SERS)技术作为一种可快速、无损、超灵敏响应目标分子指纹信息的分析检测技术,广泛应用于食品检测、环境监测、临床诊断等领域。SERS技术在各领域实现超灵敏检测的关键环节是SERS基底的构建。目前,仅由单一贵金属纳米材料通过复杂耗时的方法构建的SERS基底的SERS活性、均匀性等难以满足各领域现场快速检测的需求。因此,越来越多的研究者致力于开发简单、快速构建多功能复合SERS基底的方法。本文主要对近年来贵金属纳米复合SERS基底的构建及其应用进展进行了综述,分析了不同贵金属纳米复合SERS基底的功能及优势,并对其未来的发展趋势进行了展望。

English


    1. [1]

      FLEISCHMANN M, HENDRA P J, MCQUILLAN A J. Chem. Phys. Lett., 1974, 26(2):163-166.FLEISCHMANN M, HENDRA P J, MCQUILLAN A J. Chem. Phys. Lett., 1974, 26(2):163-166.

    2. [2]

      JEANMAIRE D L, VAN DUYNE R P. J.Electroanal. Chem. Interfacial Electrochem., 1977, 84(1):1-20.JEANMAIRE D L, VAN DUYNE R P. J.Electroanal. Chem. Interfacial Electrochem., 1977, 84(1):1-20.

    3. [3]

      ALBRECHT M G, CREIGHTON J A. J. Am. Chem. Soc., 1977, 99(15):5215-5217.ALBRECHT M G, CREIGHTON J A. J. Am. Chem. Soc., 1977, 99(15):5215-5217.

    4. [4]

      LI J F, HUANG Y F, DING Y, YANG Z L, LI S B, ZHOU X S, FAN F R, ZHANG W, ZHOU Z Y, WU D Y, REN B, WANG Z L, TIAN Z Q. Nature, 2010, 464(7287):392-395.LI J F, HUANG Y F, DING Y, YANG Z L, LI S B, ZHOU X S, FAN F R, ZHANG W, ZHOU Z Y, WU D Y, REN B, WANG Z L, TIAN Z Q. Nature, 2010, 464(7287):392-395.

    5. [5]

      SHARMA B, FRONTIERA R R, HENRY A I, RINGE E, VAN DUYNE R P. Mater. Today, 2012, 15(1-2):16-25.SHARMA B, FRONTIERA R R, HENRY A I, RINGE E, VAN DUYNE R P. Mater. Today, 2012, 15(1-2):16-25.

    6. [6]

      LAING S, JAMIESON L E, FAULDS K, GRAHAM D. Nat. Rev. Chem., 2017, 1(8):0060.LAING S, JAMIESON L E, FAULDS K, GRAHAM D. Nat. Rev. Chem., 2017, 1(8):0060.

    7. [7]

      DING S Y, YI J, LI J F, REN B, WU D Y, PANNEERSELVAM R, TIAN Z Q. Nat. Rev. Mater., 2016, 1(6):16021.DING S Y, YI J, LI J F, REN B, WU D Y, PANNEERSELVAM R, TIAN Z Q. Nat. Rev. Mater., 2016, 1(6):16021.

    8. [8]

      WILLETS K A, VAN DUYNE R P. Annu. Rev. Phys. Chem., 2007, 58:267-297.WILLETS K A, VAN DUYNE R P. Annu. Rev. Phys. Chem., 2007, 58:267-297.

    9. [9]

      ZONG C, XU M X, XU L J, WEI T, MA X, ZHENG X S, HU R, REN B. Chem. Rev., 2018, 118(10):4946-4980.ZONG C, XU M X, XU L J, WEI T, MA X, ZHENG X S, HU R, REN B. Chem. Rev., 2018, 118(10):4946-4980.

    10. [10]

      GERSTEN J, NITZAN A. J. Chem. Phys., 1980, 73(7):3023-3037.GERSTEN J, NITZAN A. J. Chem. Phys., 1980, 73(7):3023-3037.

    11. [11]

      JENSEN L, AIKE NS C M, SCHATZ G C. Chem. Soc. Rev., 2008, 37(5):1061-1073.JENSEN L, AIKE NS C M, SCHATZ G C. Chem. Soc. Rev., 2008, 37(5):1061-1073.

    12. [12]

      ZHANG L L, HAO R, ZHANG D J, YOU H J, DAI Y Z, LIU W H, FANG J X. Anal. Chem., 2020, 92(14):9838-9846.ZHANG L L, HAO R, ZHANG D J, YOU H J, DAI Y Z, LIU W H, FANG J X. Anal. Chem., 2020, 92(14):9838-9846.

    13. [13]

      SÁNCHEZ-IGLESIAS A, WINCKELMANS N, ALTANTZIS T, BALS S, GRZELCZAK M, LIZ-MARZÁN L M. J. Am. Chem. Soc., 2017, 139(1):107-110.SÁNCHEZ-IGLESIAS A, WINCKELMANS N, ALTANTZIS T, BALS S, GRZELCZAK M, LIZ-MARZÁN L M. J. Am. Chem. Soc., 2017, 139(1):107-110.

    14. [14]

      FLAURAUD V, MASTRANGELI M, BERNASCONI G D, BUTET J, ALEXANDER D T L, SHAHRABI E, MARTIN O J F, BRUGGER J. Nat. Nanotechnol., 2017, 12(1):73-80.FLAURAUD V, MASTRANGELI M, BERNASCONI G D, BUTET J, ALEXANDER D T L, SHAHRABI E, MARTIN O J F, BRUGGER J. Nat. Nanotechnol., 2017, 12(1):73-80.

    15. [15]

      LI J J, YAN H, TAN X C, LU Z C, HAN H Y. Anal. Chem., 2019, 91(6):3885-3892.LI J J, YAN H, TAN X C, LU Z C, HAN H Y. Anal. Chem., 2019, 91(6):3885-3892.

    16. [16]

      WU T, LIN Y W. Appl. Surf. Sci., 2018, 435:1143-1149.WU T, LIN Y W. Appl. Surf. Sci., 2018, 435:1143-1149.

    17. [17]

      ZHANG X L, DAI Z G, ZHANG X G, DONG S L, WU W, YANG S K, XIAO X H, JIANG C Z. Sci. China:Phys., Mech. Astron., 2016, 59(12):1-11.ZHANG X L, DAI Z G, ZHANG X G, DONG S L, WU W, YANG S K, XIAO X H, JIANG C Z. Sci. China:Phys., Mech. Astron., 2016, 59(12):1-11.

    18. [18]

      ZHANG Y J, SUN H H, GAO R X, ZHANG F, ZHU A N, CHEN L, WANG Y X. Sens. Actuators, B, 2018, 272:34-42.ZHANG Y J, SUN H H, GAO R X, ZHANG F, ZHU A N, CHEN L, WANG Y X. Sens. Actuators, B, 2018, 272:34-42.

    19. [19]

      YANG S K, CAI W P, KONG L C, LEI Y. Adv. Funct. Mater., 2010, 20(15):2527-2533.YANG S K, CAI W P, KONG L C, LEI Y. Adv. Funct. Mater., 2010, 20(15):2527-2533.

    20. [20]

      YANG S K, LAPSLEY M I, CAO B Q, ZHAO C L, ZHAO Y H, HAO Q Z, KIRALY B, SCOTT J, LI W Z, WANG L, LEI Y, HUANG T J. Adv. Funct. Mater., 2013, 23(6):720-730.YANG S K, LAPSLEY M I, CAO B Q, ZHAO C L, ZHAO Y H, HAO Q Z, KIRALY B, SCOTT J, LI W Z, WANG L, LEI Y, HUANG T J. Adv. Funct. Mater., 2013, 23(6):720-730.

    21. [21]

      LI LM, CHIN W S. ACS Appl. Mater. Interfaces, 2020, 12(33):37538-37548.LI LM, CHIN W S. ACS Appl. Mater. Interfaces, 2020, 12(33):37538-37548.

    22. [22]

      HASNA K, ANTONY A, PUIGDOLLERS J, KUMAR K R, JAYARAJ M K. Nano Res., 2016, 9(10):3075-3083.HASNA K, ANTONY A, PUIGDOLLERS J, KUMAR K R, JAYARAJ M K. Nano Res., 2016, 9(10):3075-3083.

    23. [23]

      CHEN R P, DU X, CUI Y J, ZHANG X Y, GE Q Y, DONG J, ZHAO X W. Small, 2020, 16(32):2002801.CHEN R P, DU X, CUI Y J, ZHANG X Y, GE Q Y, DONG J, ZHAO X W. Small, 2020, 16(32):2002801.

    24. [24]

      SUI C F, WANG K G, WANG S, REN J Y, BAI X H, BAI J T. Nanoscale, 2016, 8(11):5920-5927.SUI C F, WANG K G, WANG S, REN J Y, BAI X H, BAI J T. Nanoscale, 2016, 8(11):5920-5927.

    25. [25]

      SHAN D Z, HUANG L Q, LI X, ZHANG W W, WANG J, CHENG L, FENG X H, LIU Y, ZHU J P, ZHANG Y. J. Phys. Chem. C, 2014, 118(41):23930-23936.SHAN D Z, HUANG L Q, LI X, ZHANG W W, WANG J, CHENG L, FENG X H, LIU Y, ZHU J P, ZHANG Y. J. Phys. Chem. C, 2014, 118(41):23930-23936.

    26. [26]

      JI N, RUAN W D, WANG C X, LU Z C, ZHAO B. Langmuir, 2009, 25(19):11869-11873.JI N, RUAN W D, WANG C X, LU Z C, ZHAO B. Langmuir, 2009, 25(19):11869-11873.

    27. [27]

      CELIKM ALTUNTAS S, BUYUKSERIN F. Sens. Actuators, B, 2018, 255:2871-2877.CELIKM ALTUNTAS S, BUYUKSERIN F. Sens. Actuators, B, 2018, 255:2871-2877.

    28. [28]

      HONG D Y, KIM S K, KWON Y U. J. Phys. Chem. C, 2015, 119(39):22611-22617.HONG D Y, KIM S K, KWON Y U. J. Phys. Chem. C, 2015, 119(39):22611-22617.

    29. [29]

      SU S, ZHANG C, YUWEN L H, CHAO J, ZUO X L, LIU X F, SONG C Y, FAN C H, WANG L H. ACS Appl. Mater. Interfaces, 2014, 6(21):18735-18741.SU S, ZHANG C, YUWEN L H, CHAO J, ZUO X L, LIU X F, SONG C Y, FAN C H, WANG L H. ACS Appl. Mater. Interfaces, 2014, 6(21):18735-18741.

    30. [30]

      YU L L, LU L, ZENG L H, YAN X H, REN X F, WU J Z. J. Phys. Chem. C, 2021, 125(3):1940-1946.YU L L, LU L, ZENG L H, YAN X H, REN X F, WU J Z. J. Phys. Chem. C, 2021, 125(3):1940-1946.

    31. [31]

      QIU H W, WANG M Q, LI L, LI J J, YANG Z, CAO M H. Sens. Actuators, B, 2018, 255:1407-1414.QIU H W, WANG M Q, LI L, LI J J, YANG Z, CAO M H. Sens. Actuators, B, 2018, 255:1407-1414.

    32. [32]

      LI J F, TIAN X D, LI S B, ANEMA J R, YANG Z L, DING Y, WU Y F, ZENG Y M, CHEN Q Z, REN B, WANG Z L, TIAN Z Q. Nat. Protoc., 2013, 8(1):52-65.LI J F, TIAN X D, LI S B, ANEMA J R, YANG Z L, DING Y, WU Y F, ZENG Y M, CHEN Q Z, REN B, WANG Z L, TIAN Z Q. Nat. Protoc., 2013, 8(1):52-65.

    33. [33]

      WEI C, XU M M, FANG C W, JI N, YUAN Y X, YAO J L. Spectrochim. Acta, Part A, 2017, 175:262-268.WEI C, XU M M, FANG C W, JI N, YUAN Y X, YAO J L. Spectrochim. Acta, Part A, 2017, 175:262-268.

    34. [34]

      SAMAL A K, POLAVARAPU L, RODAL-CEDEIRA S, LIZ-MARZÀN L M, PÉREZ-JUSTE J, PASTORIZA-SANTOS I. Langmuir, 2013, 29(48):15076-15082.SAMAL A K, POLAVARAPU L, RODAL-CEDEIRA S, LIZ-MARZÀN L M, PÉREZ-JUSTE J, PASTORIZA-SANTOS I. Langmuir, 2013, 29(48):15076-15082.

    35. [35]

      CHANG J, ZHANG A M, HUANG Z C, CHEN Y S, ZHANG Q, CUI D X. Talanta, 2019, 198:45-54.CHANG J, ZHANG A M, HUANG Z C, CHEN Y S, ZHANG Q, CUI D X. Talanta, 2019, 198:45-54.

    36. [36]

      SHEN W, LIN X, JIANG C Y, LI C Y, LIN H X, HUANG J T, WANG S, LIU G K, YAN X M, ZHONG Q L, REN B. Angew. Chem., Int. Ed., 2015, 54(25):7308-7312.SHEN W, LIN X, JIANG C Y, LI C Y, LIN H X, HUANG J T, WANG S, LIU G K, YAN X M, ZHONG Q L, REN B. Angew. Chem., Int. Ed., 2015, 54(25):7308-7312.

    37. [37]

      LIU X J, CAO L Y, SONG W, AI K L, LU L H. ACS Appl. Mater. Interfaces, 2011, 3(8):2944-2952.LIU X J, CAO L Y, SONG W, AI K L, LU L H. ACS Appl. Mater. Interfaces, 2011, 3(8):2944-2952.

    38. [38]

      CAI Q R, MATETI S, WATANABE K, TANIGUCHI T, HUANG S M, CHEN Y, LI L H. ACS Appl. Mater. Interfaces, 2016, 8(24):15630-15636.CAI Q R, MATETI S, WATANABE K, TANIGUCHI T, HUANG S M, CHEN Y, LI L H. ACS Appl. Mater. Interfaces, 2016, 8(24):15630-15636.

    39. [39]

      CHEN J M, GUO L H, CHEN L F, QIU B, HONG G L, LIN Z Y. ACS sensors, 2020, 5(12):3964-3970.CHEN J M, GUO L H, CHEN L F, QIU B, HONG G L, LIN Z Y. ACS sensors, 2020, 5(12):3964-3970.

    40. [40]

      GUARROTXENA N, BAZAN G C. Chem. Commun., 2011, 47(31):8784-8786.GUARROTXENA N, BAZAN G C. Chem. Commun., 2011, 47(31):8784-8786.

    41. [41]

      HUANG D D, CHEN J M, DING L, GUO L H, KANNAN P, LUO F, QIU B, LIN Z Y. Anal. Chim. Acta, 2020, 1110:56-63.HUANG D D, CHEN J M, DING L, GUO L H, KANNAN P, LUO F, QIU B, LIN Z Y. Anal. Chim. Acta, 2020, 1110:56-63.

    42. [42]

      PANG Y F, WANG C W, WANG J, SUN Z W, XIAO R, WANG S Q. Biosens. Bioelectron., 2016, 79:574-580.PANG Y F, WANG C W, WANG J, SUN Z W, XIAO R, WANG S Q. Biosens. Bioelectron., 2016, 79:574-580.

    43. [43]

      SUN F, ELLA-MENYE J R, GALVAN D D, BAI T, HUNG H C, CHOU Y N, ZHANG P, JIANG S Y, YU Q M. ACS Nano, 2015, 9(3):2668-2676.SUN F, ELLA-MENYE J R, GALVAN D D, BAI T, HUNG H C, CHOU Y N, ZHANG P, JIANG S Y, YU Q M. ACS Nano, 2015, 9(3):2668-2676.

    44. [44]

      JIA Y, SHMAKOV S N, PINKHASSIK E. ACS Appl. Mater. Interfaces, 2016, 8(30):19755-19763.JIA Y, SHMAKOV S N, PINKHASSIK E. ACS Appl. Mater. Interfaces, 2016, 8(30):19755-19763.

    45. [45]

      KIM Y H, KIM D J, LEE S, KIM D H, PARK S G, KIM S H. Small, 2019, 15(52):1905076.KIM Y H, KIM D J, LEE S, KIM D H, PARK S G, KIM S H. Small, 2019, 15(52):1905076.

    46. [46]

      KIM D J, PARK S G, KIM D H, KIM S H. Small, 2018, 14(40):1802520.KIM D J, PARK S G, KIM D H, KIM S H. Small, 2018, 14(40):1802520.

    47. [47]

      XIE Y F, CHEN T, GUO Y H, CHENG Y L, QIAN H, YAO W R. Food Chem., 2019, 270:173-180.XIE Y F, CHEN T, GUO Y H, CHENG Y L, QIAN H, YAO W R. Food Chem., 2019, 270:173-180.

    48. [48]

      AI Y J, LIANG P, WU Y X, DONG Q M, LI J B, BAI Y, XU B J, YU Z, NI D J. Food Chem., 2018, 241:427-433.AI Y J, LIANG P, WU Y X, DONG Q M, LI J B, BAI Y, XU B J, YU Z, NI D J. Food Chem., 2018, 241:427-433.

    49. [49]

      CHEN J M, HUANG Y J, KANNAN P, ZHANG L, LIN Z Y, ZHANG J W, CHEN T, GUO L H. Anal. Chem., 2016, 88(4):2149-2155.CHEN J M, HUANG Y J, KANNAN P, ZHANG L, LIN Z Y, ZHANG J W, CHEN T, GUO L H. Anal. Chem., 2016, 88(4):2149-2155.

    50. [50]

      HE H R, SUN D W, PU H B, HUANG L J. Food Chem., 2020, 324:126832.HE H R, SUN D W, PU H B, HUANG L J. Food Chem., 2020, 324:126832.

    51. [51]

      BAO L L, MAHURIN S M, HAIRE R G, DAI S. Anal. Chem., 2003, 75(23):6614-6620.BAO L L, MAHURIN S M, HAIRE R G, DAI S. Anal. Chem., 2003, 75(23):6614-6620.

    52. [52]

      HE J, XU F J, CHEN Z, HOU X D, LIU Q, LONG Z. Chem. Commun., 2017, 53(80):11044-11047.HE J, XU F J, CHEN Z, HOU X D, LIU Q, LONG Z. Chem. Commun., 2017, 53(80):11044-11047.

    53. [53]

      ZHANG C H, ZHU J, LI J J, ZHAO J W. ACS Appl. Mater. Interfaces, 2017, 9(20):17387-17398.ZHANG C H, ZHU J, LI J J, ZHAO J W. ACS Appl. Mater. Interfaces, 2017, 9(20):17387-17398.

    54. [54]

      LI S J, ZHAO B F, AGUIRRE A, WANG Y, LI R X, YANG S S, ARAVIND I, CAI Z, CHEN R, JENSEN L, CRONIN S B. Anal. Chem., 2021, 93(16):6421-6427.LI S J, ZHAO B F, AGUIRRE A, WANG Y, LI R X, YANG S S, ARAVIND I, CAI Z, CHEN R, JENSEN L, CRONIN S B. Anal. Chem., 2021, 93(16):6421-6427.

    55. [55]

      KIM S H, KIM D H, PARK S G. Analyst, 2018, 143(13):3006-3010.KIM S H, KIM D H, PARK S G. Analyst, 2018, 143(13):3006-3010.

    56. [56]

      GUERRINI L, KRPETIĆŽ, VAN LIEROP D, ALVAREZ-PUEBLA R A, GRAHAM D. Angew. Chem., Int. Ed., 2015, 127(4):1160-1164.GUERRINI L, KRPETIĆŽ, VAN LIEROP D, ALVAREZ-PUEBLA R A, GRAHAM D. Angew. Chem., Int. Ed., 2015, 127(4):1160-1164.

    57. [57]

      WANG C W, WANG C G, WANG X L, WANG K L, ZHU Y H, RONG Z, WANG W Y, XIAO R, WANG S Q. ACS Appl. Mater. Interfaces, 2019, 11(21):19495-19505.WANG C W, WANG C G, WANG X L, WANG K L, ZHU Y H, RONG Z, WANG W Y, XIAO R, WANG S Q. ACS Appl. Mater. Interfaces, 2019, 11(21):19495-19505.

    58. [58]

      ZHANG W S, WANG Y N, WANG Y, XU Z R. Sens. Actuators, B, 2019, 283:532-537.ZHANG W S, WANG Y N, WANG Y, XU Z R. Sens. Actuators, B, 2019, 283:532-537.

    59. [59]

      YUE S, SUN X T, WANG Y, ZHANG W S, XU Z R. Sens. Actuators, B, 2018, 273:1539-1547.YUE S, SUN X T, WANG Y, ZHANG W S, XU Z R. Sens. Actuators, B, 2018, 273:1539-1547.

    60. [60]

      PANIKAR S S, RAMÍREZ-GARCÍA G, SIDHIK S, LOPEZ-LUKE T, RODRIGUEZ-GONZALEZ C, CIAPARA I H, CASTILLO P S, CAMACHO-VILLEGAS T, DE LA ROSA E. Anal. Chem., 2018, 91(3):2100-2111.PANIKAR S S, RAMÍREZ-GARCÍA G, SIDHIK S, LOPEZ-LUKE T, RODRIGUEZ-GONZALEZ C, CIAPARA I H, CASTILLO P S, CAMACHO-VILLEGAS T, DE LA ROSA E. Anal. Chem., 2018, 91(3):2100-2111.

    61. [61]

      HODGES M D, KELLY J G, BENTLEY A J, FOGARTY S, PATEL I I, MARTIN F L, FULLWOOD N J. ACS Nano, 2011, 5(12):9535-9541.HODGES M D, KELLY J G, BENTLEY A J, FOGARTY S, PATEL I I, MARTIN F L, FULLWOOD N J. ACS Nano, 2011, 5(12):9535-9541.

    62. [62]

      TAHIR M A, DINA N E, CHENG H Y, VALEV V K, ZHANG L W. Nanoscale, 2021, 13(27):11593-11634.TAHIR M A, DINA N E, CHENG H Y, VALEV V K, ZHANG L W. Nanoscale, 2021, 13(27):11593-11634.

  • 加载中
计量
  • PDF下载量:  42
  • 文章访问数:  1243
  • HTML全文浏览量:  222
文章相关
  • 收稿日期:  2021-12-20
  • 修回日期:  2022-02-12
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章