基于原位电化学石英晶体微天平技术的硅基负极粘结剂性能分析

崔亚楠 孙琪 任晓燕 逯乐慧

引用本文: 崔亚楠, 孙琪, 任晓燕, 逯乐慧. 基于原位电化学石英晶体微天平技术的硅基负极粘结剂性能分析[J]. 分析化学, 2022, 50(3): 384-391. doi: 10.19756/j.issn.0253-3820.210874 shu
Citation:  CUI Ya-Nan,  SUN Qi,  REN Xiao-Yan,  LU Le-Hui. Performance Analysis of Binders for Silicon Anodes by In-situ Electrochemical Quartz Crystal Microbalance Technique[J]. Chinese Journal of Analytical Chemistry, 2022, 50(3): 384-391. doi: 10.19756/j.issn.0253-3820.210874 shu

基于原位电化学石英晶体微天平技术的硅基负极粘结剂性能分析

    通讯作者: 任晓燕,E-mail:xyren@ciac.ac.cn; 逯乐慧,E-mail:lehuilu@ciac.ac.cn
  • 基金项目:

    国家自然科学基金项目(Nos.21874127,22004115,21721003)资助。

摘要: 粘结剂是锂离子电池硅基负极材料的重要组成部分,与锂离子电池的性能密切相关。本研究选取两类不同作用机制的典型粘结剂聚偏二氟乙烯(PVDF)和海藻酸钠(ALG),通过原位与非原位结合的方式对不同作用机制的粘结剂对硅电极充放电过程电化学行为的影响进行了初步探讨。首先利用恒电流充放电测试、循环伏安法、交流阻抗法和扫描电子显微镜等方法对粘结剂的粘结效果进行表征和评估。结果表明,使用ALG作为粘结剂的硅电极可以稳定循环200圈,每圈循环容量衰减率仅为0.2%,并且电极表面平整,电化学阻抗小,与使用PVDF作为粘结剂的硅电极相比优势明显。为了深入分析造成差异性结果的原因,引入原位电化学石英晶体微天平技术(In-situ electrochemical quartz crystal microbalance,In-situ EQCM)实时、定量地记录首圈放电时硅基负极表面的质量和电流变化过程。结果表明,粘结剂ALG的羧基基团与硅表面羟基基团间的氢键相互作用增强了纳米硅颗粒对集流体的黏附作用,促进电极表面生成薄而致密的固体电解质界面(SEI)膜,并且减少了电极表面电解液的分解,从而显著提高了电化学性能。

English


    1. [1]

      OBROVAC M N, CHEVRIER V L. Chem. Rev., 2014, 114(23):11444-11502.OBROVAC M N, CHEVRIER V L. Chem. Rev., 2014, 114(23):11444-11502.

    2. [2]

      TRIPATHI A M, SU W N, HWANG B J. Chem. Soc. Rev., 2018, 47(3):736-851.TRIPATHI A M, SU W N, HWANG B J. Chem. Soc. Rev., 2018, 47(3):736-851.

    3. [3]

      LIU Zhen-Bang, MA Ying-Ming, HAN Dong-Xue, DONG Xian-Dui, NIU Li, BAO Yu. Chin. J. Anal. Chem., 2018, 46(8):1171-1177. 刘振邦, 马英明, 韩冬雪, 董献堆, 牛利, 包宇. 分析化学, 2018, 46(8):1171-1177.

    4. [4]

      LIAO Yu-Zhi, SI Shi-Hui, CHEN Jin-Hua, LU Yang, DU Ming. Chin. J. Anal. Chem., 2019, 47(7):992-997. 廖玉枝, 司士辉, 陈金华, 卢阳, 杜明. 分析化学, 2019, 47(7):992-997.

    5. [5]

      JI Y C, YIN Z W, YANG Z Z, DENG Y P, CHEN H B, LIN C, YANG L Y, YANG K, ZHANG M J, XIAO Q F, LI J T, CHEN Z W, SUN S G, PAN F. Chem. Soc. Rev., 2021, 50(19):10743-10763.JI Y C, YIN Z W, YANG Z Z, DENG Y P, CHEN H B, LIN C, YANG L Y, YANG K, ZHANG M J, XIAO Q F, LI J T, CHEN Z W, SUN S G, PAN F. Chem. Soc. Rev., 2021, 50(19):10743-10763.

    6. [6]

      ZHU G J, CHAO D L, XU W L, WU M H, ZHANG H J. ACS Nano, 2021, 15(10):15567-15593.ZHU G J, CHAO D L, XU W L, WU M H, ZHANG H J. ACS Nano, 2021, 15(10):15567-15593.

    7. [7]

      WU F X, MAIER J, YU Y. Chem. Soc. Rev., 2020, 49(5):1569-1614.WU F X, MAIER J, YU Y. Chem. Soc. Rev., 2020, 49(5):1569-1614.

    8. [8]

      HUANG Su-Qing, HUANG Zhao, GU Tie-An, XIE Qing-Ji, YAO Shou-Zhuo. Chin. J. Anal. Chem., 2011, 39(7):978-984. 黄素清, 黄钊, 谷铁安, 谢青季, 姚守拙. 分析化学, 2011, 39(7):978-984.

    9. [9]

      CHAN C K, PATEL R N, O'CONNELL M J. ACS Nano, 2010, 4(3):1443-1450.CHAN C K, PATEL R N, O'CONNELL M J. ACS Nano, 2010, 4(3):1443-1450.

    10. [10]

      LIU N, LU Z, ZHAO J, MCDOWELL M T, LEE H W, ZHAO W, CUI Y. Nat. Nanotechnol, 2014, 9(3):187-192.LIU N, LU Z, ZHAO J, MCDOWELL M T, LEE H W, ZHAO W, CUI Y. Nat. Nanotechnol, 2014, 9(3):187-192.

    11. [11]

      CHAN C K, PENG H, LIU G, MCILWRATH K, ZHANGX F, HUGGINS R A. Nat. Nanotechnol., 2007, 3(1):31-35.CHAN C K, PENG H, LIU G, MCILWRATH K, ZHANGX F, HUGGINS R A. Nat. Nanotechnol., 2007, 3(1):31-35.

    12. [12]

      MAGASINSKI A, ZDYRKO B, KOVALENKO I, HERTZBERG B, BURTOVYY R, HUEBNER C F, FULLER T F, LUZINOV I, YUSHIN G. ACS Appl. Mater. Interfaces, 2010, 2(11):3004-3010.MAGASINSKI A, ZDYRKO B, KOVALENKO I, HERTZBERG B, BURTOVYY R, HUEBNER C F, FULLER T F, LUZINOV I, YUSHIN G. ACS Appl. Mater. Interfaces, 2010, 2(11):3004-3010.

    13. [13]

      CHOI S, KWON T W, COSKUN A, CHOI J W. Science, 2017, 357(6348):279-283.CHOI S, KWON T W, COSKUN A, CHOI J W. Science, 2017, 357(6348):279-283.

    14. [14]

      RYOU M H, KIM J, LEE I, KIM S, JEONG Y K, HONG S, RYU J H, KIM T S, PARK J K, LEE H, CHOI J W. Adv. Mater., 2013, 25(11):1571-1576.RYOU M H, KIM J, LEE I, KIM S, JEONG Y K, HONG S, RYU J H, KIM T S, PARK J K, LEE H, CHOI J W. Adv. Mater., 2013, 25(11):1571-1576.

    15. [15]

      RUFFO R, HONG S S, CHAN C K. J. Phys. Chem. C, 2009, 113(26):11390-11398.RUFFO R, HONG S S, CHAN C K. J. Phys. Chem. C, 2009, 113(26):11390-11398.

    16. [16]

      CHANG J B, HUANG X K, ZHOU G H, CUI S M, HALLAC P B, JIANG J W, HURLEY P T, CHEN J H. Adv. Mater., 2014, 26(5):758-764.CHANG J B, HUANG X K, ZHOU G H, CUI S M, HALLAC P B, JIANG J W, HURLEY P T, CHEN J H. Adv. Mater., 2014, 26(5):758-764.

    17. [17]

      CHEN H, LING M, HENCZ L, LING H Y, LI G R, LIN Z, LIU G, ZHANG S Q. Chem. Rev., 2018, 118(18):8936-8982.CHEN H, LING M, HENCZ L, LING H Y, LI G R, LIN Z, LIU G, ZHANG S Q. Chem. Rev., 2018, 118(18):8936-8982.

    18. [18]

      SONG J X, ZHOU M J, YI R, XU T, GORDIN M L, TANG D H, YU Z X, REGULA M, WANG D H. Adv. Funct. Mater., 2014, 24(37):5904-5910.SONG J X, ZHOU M J, YI R, XU T, GORDIN M L, TANG D H, YU Z X, REGULA M, WANG D H. Adv. Funct. Mater., 2014, 24(37):5904-5910.

    19. [19]

      LI Jia-Yu, QI Li, WANG Hong-Yu. Chin. J. Anal. Chem., 2017, 45(4):560-564. 李家玉, 齐力, 王宏宇. 分析化学, 2017, 45(4):560-564.

    20. [20]

      PARK C M, KIM J H, KIM H, SOHN H J. Chem. Soc. Rev., 2010, 39(8):3115-3141.PARK C M, KIM J H, KIM H, SOHN H J. Chem. Soc. Rev., 2010, 39(8):3115-3141.

    21. [21]

      JIAO X X, YIN J Q, XU X Y, WANG J L, LIU Y Y, XIONG S Z, ZHANG Q L, SONG J X. Adv. Funct. Mater., 2021, 31(3):2005699.JIAO X X, YIN J Q, XU X Y, WANG J L, LIU Y Y, XIONG S Z, ZHANG Q L, SONG J X. Adv. Funct. Mater., 2021, 31(3):2005699.

    22. [22]

      LIU D, ZHAO Y, TAN R, TIAN L L, LIU Y, PAN F. Nano Energy, 2017, 36:206-212.LIU D, ZHAO Y, TAN R, TIAN L L, LIU Y, PAN F. Nano Energy, 2017, 36:206-212.

    23. [23]

      WANG C, WU H, CHEN Z, MCDOWELL M T, CUI Y, BAO Z A. Nat. Chem., 2013, 5(12):1042-1048.WANG C, WU H, CHEN Z, MCDOWELL M T, CUI Y, BAO Z A. Nat. Chem., 2013, 5(12):1042-1048.

    24. [24]

      LIU T C, LIN L P, BI X X, TIAN L L, XU K, PAN F. Nat. Nanotechnol., 2019, 14:50-56.LIU T C, LIN L P, BI X X, TIAN L L, XU K, PAN F. Nat. Nanotechnol., 2019, 14:50-56.

    25. [25]

      WANG J, HU Y, ZHAO H, FU H X, PENG K Q. Adv. Mater. Interfaces, 2018, 5(23):1801132.WANG J, HU Y, ZHAO H, FU H X, PENG K Q. Adv. Mater. Interfaces, 2018, 5(23):1801132.

    26. [26]

      KOVALENKO I, ZDYRKO B, MAGASINSKI A, HERTZBERG B, MILICEV Z, BURTOVYY R, LUZINOV I, YUSHIN G. Science, 2011, 334(6052):75-79.KOVALENKO I, ZDYRKO B, MAGASINSKI A, HERTZBERG B, MILICEV Z, BURTOVYY R, LUZINOV I, YUSHIN G. Science, 2011, 334(6052):75-79.

    27. [27]

      MA X, GAO Y, CHEN M, WU L M. ChemElectroChem, 2017, 4(6):1463-1469.MA X, GAO Y, CHEN M, WU L M. ChemElectroChem, 2017, 4(6):1463-1469.

    28. [28]

      LIU W, LIU P, MITLIN D. Adv. Energy Mater., 2020, 10(43):2002297.LIU W, LIU P, MITLIN D. Adv. Energy Mater., 2020, 10(43):2002297.

    29. [29]

      ZHAO Q, STALIN S, ARCHER L A. Joule, 2021, 5(5):1119-1142.ZHAO Q, STALIN S, ARCHER L A. Joule, 2021, 5(5):1119-1142.

    30. [30]

      WU H, CHAN G, CHOI J W, YANG Y, HU L. Nat. Nanotechnol., 2012, 7(5):310-315.WU H, CHAN G, CHOI J W, YANG Y, HU L. Nat. Nanotechnol., 2012, 7(5):310-315.

    31. [31]

      LUO W, CHEN X Q, XIA Y, LI W, YANG J P. Adv. Energy Mater., 2017, 7(24):1701083.LUO W, CHEN X Q, XIA Y, LI W, YANG J P. Adv. Energy Mater., 2017, 7(24):1701083.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  146
  • HTML全文浏览量:  5
文章相关
  • 收稿日期:  2021-12-02
  • 修回日期:  2022-01-13
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章