Citation:
WANG Bo, ZHANG Xu-Dong, KANG Ge, LIU Fang-Ning, ZHAO Dan, CHEN Chuan-Xia, LU Yi-Zhong. Colorimetric Detection of Alkaline Phosphatase Activity Based on Manganese Single Atom Nanozyme[J]. Chinese Journal of Analytical Chemistry,
;2022, 50(1): 54-63.
doi:
10.19756/j.issn.0253-3820.210812
-
Manganese (Mn) single atom nanozyme with peroxidase-like activity was synthesized through a solvothermal method and used for the detection of alkaline phosphatase (ALP) activity. By using formamide as the carbon and nitrogen source and MnCl2 as the Mn source, formamide converted Mn and nitroren co-doped carbon (f-MnNC) could be obtained after reacting at 180℃ for 12 h. The structure and morphology were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffractometer, etc., and the peroxidase-like activity was investigated mainly using UV-visible absorption spectroscopy. In the presence of H2O2, f-MnNC could catalyze the oxidation of colorless 3,3',5,5'-tetramethylbenzidine (TMB) into blue oxidized TMB (oxTMB), with a characteristic absorption peak centered at 652 nm. ALP could catalyze the hydrolysis of L-ascorbic acid-2-phosphate (AA2P) to produce ascorbic acid (AA), which then reduced oxTMB to TMB, resulting in faded color and decreased absorbance. The degree of colorimetric signal change was related to ALP activity, and thus ALP activity could be quantitatively detected by employing AA2P as the substrate. In the activity range of 0.1-10 mU/mL, there was a good linear relationship between the absorbance at 652 nm and the ALP activity, and the detection limit (S/N=3) was 0.059 mU/mL. Other proteins and enzymes had no obvious interference with ALP detection, indicating good selectivity for ALP activity detection. The method was successfully applied to the determination of ALP activity in serum with satisfactory results.
-
-
-
[1]
MILLÁN J L. Purinerg. Signal., 2006, 2(2):335.
-
[2]
FERNANDEZ N J, KIDNEY B A. Vet. Clin. Path., 2007, 36(3):223-233.
-
[3]
GOGGINS S, NAZ C, MARSH B J, FROST C G. Chem. Commun., 2015, 51(3):561-564.
-
[4]
KREUZER M P, O'SULLIVAN C K, GUILBAULT G G. Anal. Chim. Acta, 1999, 393(1):95-102.
-
[5]
BLUM J S, LI R H, MIKOS A G, BARRY M A. J. Cell Biochem., 2001, 80(4):532-537.
-
[6]
HASEGAWA T, SUGITA M, TAKATANI K, MATSUURA H, UMEMURA T, HARAGUCHI H. Bull. Chem. Soc. Jpn., 2006, 79(8):1211-1214.
-
[7]
RUAN C M, WANG W, GU B H. Anal. Chem., 2006, 78(10):3379-3384.
-
[8]
WEI H, CHEN C G, HAN B Y, WANG E K. Anal. Chem., 2008, 80(18):7051-7055.
-
[9]
CHEN C X, ZHAO D, JIANG Y Y, NI P J, ZHANG C H, WANG B, YANG F, LU Y Z, SUN J. Anal. Chem., 2019, 91(23):15017-15024.
-
[10]
ZHAO W, CHIUMAN W, LAM J C, BROOK M A, LI Y. Chem. Commun., 2007, 43(36):3729-3731.
-
[11]
SUN J, ZHAO J, BAO X, WANG Q, YANG X. Anal. Chem., 2018, 90(10):6339-6345.
-
[12]
CHEN C X, ZHANG G L, NI P J, JIANG Y Y, LU Y Z, LU Z L. Microchim. Acta, 2019, 186(6):348.
-
[13]
XIANYU Y L, WANG Z, JIANG X Y. ACS Nano, 2014, 8(12):12741-12747.
-
[14]
CHEN C X, YUAN Q, NI P J, JIANG Y Y, ZHAO Z L, LU Y Z. Analyst, 2018, 143(16):3821-3828.
-
[15]
MA J L, YIN B C, WU X, YE B C. Anal. Chem., 2016, 88(18):9219-9225.
-
[16]
CHEN C X, ZHAO J H, LU Y Z, SUN J, YANG X R. Anal. Chem., 2018, 90(5):3505-3511.
-
[17]
KIM T I, KIM H, CHOI Y, KIM Y. Chem. Commun., 2011, 47(35):9825-9827.
-
[18]
CHEN C X, ZHAO D, WANG B, NI P J, JIANG Y Y, ZHANG C H, YANG F, LU Y Z, SUN J. Anal. Chem., 2020, 92(6):4639-4646.
-
[19]
SUN J, HU T, CHEN C X, ZHAO D, YANG F, YANG X R. Anal. Chem., 2016, 88(19):9789-9795.
-
[20]
ZHAO D, LI J, PENG C Y, ZHU S Y, SUN J, YANG X R. Anal. Chem., 2019, 91(4):2978-2984.
-
[21]
MALASHIKHINA N, GARAI-IBABE G, PAVLOV V. Anal. Chem., 2013, 85(14):6866-6870.
-
[22]
BABSON A L, GREELEY S J, COLEMAN C M, PHILLIPS G E. Clin. Chem., 1966, 12(8):482-490.
-
[23]
-
[24]
YANG X, GAO Z. Chem. Commun., 2015, 51(32):6928-6931.
-
[25]
WANG C, GAO J, CAO Y, TAN H. Anal. Chim. Acta, 2018, 1004:74-81.
-
[26]
SONG H, YE K, PENG Y, WANG L, NIU X. J. Mater. Chem. B, 2019, 7(38):5834-5841.
-
[27]
TIAN F, ZHOU J, MA J, LIU S, JIAO B, HE Y. Microchim. Acta, 2019, 186(7):408.
-
[28]
JIAO L, YAN H, WU Y, GU W, ZHU C, DU D, LIN Y. Angew. Chem., Int. Ed., 2020, 59(7):2565-2576.
-
[29]
HAN L, ZHANG H, CHEN D, LI F. Adv. Funct. Mater., 2018, 28(17):1800018.
-
[30]
-
[31]
ZHANG G, JIA Y, ZHANG C, XIONG X, SUN K, CHEN R, CHEN W, KUANG Y, ZHENG L, TANG H, LIU W, LIU J, SUN X, LIN W F, DAI H. Energy Environ. Sci., 2019, 12(4):1317-1325.
-
[32]
GONG Z, YANG B, LIN H, TANG Y, TANG Z, ZHANG J, ZHANG H, LI Y, XIE Y, LI Q, CHI L. ACS Nano, 2016, 10(4):4228-4235.
-
[33]
CHEN Z, MITCHELL S, VOROBYEVA E, LEARY R K, HAUERT R, FURNIVAL T, RAMASSE Q M, THOMAS J M, MIDGLEY P A, DONTSOVA D, ANTONIETTI M, POGODIN S, LÓPEZ N, PÉREZ-RAMÍREZ J. Adv. Funct. Mater., 2017, 27(8):1605785.
-
[34]
JIANG B, DUAN D, GAO L, ZHOU M, FAN K, TANG Y, XI J, BI Y, TONG Z, GAO G F, XIE N, TANG A, NIE G, LIANG M, YAN X. Nat. Protoc., 2018, 13(7):1506-1520.
-
[35]
GAO L, ZHUANG J, NIE L, ZHANG J, ZHANG Y, GU N, WANG T, FENG J, YANG D, PERRETT S, YAN X. Nat. Nanotechnol., 2007, 2(9):577-583.
-
[36]
QIAO F, CHEN L, LI X, LI L, AI S. Sens. Actuators, B, 2014, 193:255-262.
-
[37]
XU W, JIAO L, YAN H, WU Y, CHEN L, GU W, DU D, LIN Y, ZHU C. ACS Appl. Mater. Interfaces, 2019, 11(25):22096-22101.
-
[38]
WU Y, WU J, JIAO L, XU W, WANG H, WEI X, GU W, REN G, ZHANG N, ZHANG Q, HUANG L, GU L, ZHU C. Anal. Chem., 2020, 92(4):3373-3379.
-
[39]
GE C, WU R, CHONG Y, FANG G, JIANG X, PAN Y, CHEN C, YIN J J. Adv. Funct. Mater., 2018,28(28):1801484.
-
[40]
CHEN C X, LIU W D, NI P J, JIANG Y Y, ZHANG C H, WANG B, LI J K, CAO B Q, LU Y Z, CHEN W. ACS Appl. Mater. Interfaces, 2019, 11(50):47564-47570.
-
[41]
LIU W D, CHU L, ZHANG C H, NI P J, JIANG Y Y, WANG B, LU Y Z, CHEN C X. Chem. Eng. J., 2021, 415:128876.
-
[42]
JIANG X, WANG X, LIN A, WEI H. Anal. Chem., 2021, 93(14):5954-5962.
-
[43]
WANG J W, NI P J, CHEN C X, JIANG Y Y, ZHANG C H, WANG B, CAO B Q, LU Y Z. Microchim. Acta, 2020, 187(2):115.
-
[44]
ZHANG Q, YU Y, YUN X, LUO B, JIANG H, CHEN C, WANG S, MIN D. ACS Appl. Nano Mater., 2020,3(6):5212-5219.
-
[45]
HAYAT A, GONCA B, ANDREESCU S. Biosens. Bioelectron., 2014, 56:334-339.
-
[46]
CHEN Q, LI S, LIU Y, ZHANG X, TANG Y, CHAI H, HUANG Y. Sens. Actuators, B, 2020, 305:127511.
-
[47]
XIE X, WANG Y, ZHOU X, CHEN J, WANG M, SU X. Analyst, 2021, 146(3):896-903.
-
[1]
-
-
-
[1]
Zitong Chen , Zipei Su , Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054
-
[2]
Chunmei GUO , Weihan YIN , Jingyi SHI , Jianhang ZHAO , Ying CHEN , Quli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162
-
[3]
Liwei Wang , Guangran Ma , Li Wang , Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094
-
[4]
Jie ZHANG , Xin LIU , Zhixin LI , Yuting PEI , Yuqi YANG , Huimin LI , Zhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310
-
[5]
Li'na ZHONG , Jingling CHEN , Qinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280
-
[6]
Hong LI , Xiaoying DING , Cihang LIU , Jinghan ZHANG , Yanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370
-
[7]
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
-
[8]
Lin LI , Le CHEN , Lingjie HOU , Jiaqi JING , Jiayu DING , Tao ZHOU , Ruiping ZHANG . Smartphone-assisted fluorescent silver nanoclusters as ratiometric sensor for visual colorimetric detection of sulfide. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2261-2271. doi: 10.11862/CJIC.20250130
-
[9]
Xueting Feng , Ziang Shang , Rong Qin , Yunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005
-
[10]
Xichen YAO , Shuxian WANG , Yun WANG , Cheng WANG , Chuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384
-
[11]
Yu Dai , Xueting Sun , Haoyu Wu , Naizhu Li , Guoe Cheng , Xiaojin Zhang , Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052
-
[12]
Jingkun Yu , Xue Yong , Ang Cao , Siyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015
-
[13]
Shiqian WEI , Xinyu TIAN , Hong LIU , Maoxia CHEN , Fan TANG , Qiang FAN , Weifeng FAN , Yu HU . Oxygen reduction reaction/oxygen evolution reaction catalytic performances of different active sites on nitrogen-doped graphene loaded with iron single atoms. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1776-1788. doi: 10.11862/CJIC.20250102
-
[14]
Yang Li , Jiachen Li , Daidi Fan . 二硫化钼纳米片的制备及其纳米酶性能探究——介绍一个大学化学综合实验. University Chemistry, 2025, 40(8): 233-240. doi: 10.12461/PKU.DXHX202410016
-
[15]
Yanan Liu , Yufei He , Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081
-
[16]
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
-
[17]
Jianyu Qin , Yuejiao An , Yanfeng Zhang . In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-0. doi: 10.3866/PKU.WHXB202408002
-
[18]
Haotong Ma , Mingyu Heng , Yang Xu , Wei Bi , Yingchun Miao , Shuning Xiao . Synergistic carbon doping and Cu loading on boron nitride via microwave synthesis for enhanced atmospheric CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(11): 100132-0. doi: 10.1016/j.actphy.2025.100132
-
[19]
Zhuoya WANG , Le HE , Zhiquan LIN , Yingxi WANG , Ling LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194
-
[20]
Quanliang Chen , Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133
-
[1]
Metrics
- PDF Downloads(27)
- Abstract views(1583)
- HTML views(251)
Login In
DownLoad: