聚腺嘌呤保护的金纳米团簇与金属有机框架材料ZIF-8复合物的聚集诱导发光增强及用于抗坏血酸的高灵敏荧光检测

曹程程 林祥芳 任晨宇 苏磊

引用本文: 曹程程, 林祥芳, 任晨宇, 苏磊. 聚腺嘌呤保护的金纳米团簇与金属有机框架材料ZIF-8复合物的聚集诱导发光增强及用于抗坏血酸的高灵敏荧光检测[J]. 分析化学, 2022, 50(6): 932-939. doi: 10.19756/j.issn.0253-3820.210807 shu
Citation:  CAO Cheng-Cheng,  LIN Xiang-Fang,  REN Chen-Yu,  SU Lei. Polyadenine-capped Gold Nanoclusters Incorporated into Zeolitic Imidazolate Framework-8 with Aggregation-induced Fluorescence Emission Enhancement for High-Sensitivity Fluorescence Detection of Ascorbic Acid[J]. Chinese Journal of Analytical Chemistry, 2022, 50(6): 932-939. doi: 10.19756/j.issn.0253-3820.210807 shu

聚腺嘌呤保护的金纳米团簇与金属有机框架材料ZIF-8复合物的聚集诱导发光增强及用于抗坏血酸的高灵敏荧光检测

    通讯作者: 苏磊,E-mail:sulei@szu.edu.cn
摘要: 纳米金属有机框架材料(NMOFs)在生物诊断和治疗领域中具有良好的应用前景。本研究建立了一种基于聚腺嘌呤保护的金纳米团簇(PolyA-AuNC)和金属有机框架沸石咪唑酯骨架-8(ZIF-8)纳米复合材料的荧光分析方法,用于血清中抗坏血酸(AA)的高灵敏检测。所制备的纳米复合材料(Poly A-Au NCs@ZIF-8)通过MOF (即ZIF-8)的限制效应显示出聚集诱导的荧光发射增强现象。当AA与ZIF-8作用时,复合材料的骨架被破坏,PolyA-AuNCs从聚集态转变为分散态,导致荧光强度大大降低。将本方法用于AA的检测,线性范围为10~100μmol/L,检出限(LOD,S/N=3)为0.3μmol/L。本方法可在2 min内完成AA的检测,对AA的选择性高。将本方法用于检测人血清中的AA,回收率为95.7%~100.9%。

English


    1. [1]

      SONGTHAM R, PATTRAPORN S, CHUTIMA P, AMORNRAT K, THAWATCHAI T. Chem. Select., 2021, 6(6):1248-1254.SONGTHAM R, PATTRAPORN S, CHUTIMA P, AMORNRAT K, THAWATCHAI T. Chem. Select., 2021, 6(6):1248-1254.

    2. [2]

      XU Y L, NIU X Y, CHEN H L, ZHAO S G, CHEN X G. Chin. Chem. Lett., 2017, 28(2):338-344.XU Y L, NIU X Y, CHEN H L, ZHAO S G, CHEN X G. Chin. Chem. Lett., 2017, 28(2):338-344.

    3. [3]

      BI J R, WANG H T, KAMAL T, ZHU B W, TAN M Q. RSC Adv., 2017, 7(48):30481-30487.BI J R, WANG H T, KAMAL T, ZHU B W, TAN M Q. RSC Adv., 2017, 7(48):30481-30487.

    4. [4]

      LIMA D R S, COSSENZA M, GARCIA C G, PORTUGAL C C, MARQUES F F D C, PAESDECARVALHO R, NETTO A D P. Anal. Methods, 2016, 8(27):5441-5447.LIMA D R S, COSSENZA M, GARCIA C G, PORTUGAL C C, MARQUES F F D C, PAESDECARVALHO R, NETTO A D P. Anal. Methods, 2016, 8(27):5441-5447.

    5. [5]

      CUI Ling-Jun, SUN Hai-Xin, LI Jie, ZHAO Mei-Li, ZHOU Yan-Pei. Mod. Food Sci. Technol., 2018, 34(4):258-263.崔玲君, 孙海新, 李洁, 赵美丽, 周延培。现代食品科技, 2018, 34(4):258-263.

    6. [6]

      HUANG D Q, LI X, CHEN M M, CHEN F, WAN Z G, RUI R, WANG R, FAN S H, WU H. J. Electroanal. Chem., 2019, 841:101-106.HUANG D Q, LI X, CHEN M M, CHEN F, WAN Z G, RUI R, WANG R, FAN S H, WU H. J. Electroanal. Chem., 2019, 841:101-106.

    7. [7]

      WANG Chun-Yan, ZHOU Jian, TANG Hong-Bo, LI Qiu-Yue, ZHOU Xiao-Yan. Mod. Food Sci. Technol., 2021, 37(5):319-324.王春艳, 周健, 汤洪波, 李秋月, 周晓燕.现代食品科技, 2021, 37(5):319-324.

    8. [8]

      WU Na, SHEN Yuan, WANG Li, SONG Yong-Hai. Chin. J. Anal. Chem., 2020, 48(12):1650-1657.吴娜, 申源, 汪莉, 宋永海.分析化学, 2020, 48(12):1650-1657.

    9. [9]

      LIU H, NA W D, LIU Z P, CHEN X Q, SU X G. Biosens. Bioelectron., 2017, 92:229-233.LIU H, NA W D, LIU Z P, CHEN X Q, SU X G. Biosens. Bioelectron., 2017, 92:229-233.

    10. [10]

      JALILI R, DASTBORHAN M, CHENAGHLOU S, KHATAEE A. J. Photochem. Photobiol., A, 2020, 391:112370.JALILI R, DASTBORHAN M, CHENAGHLOU S, KHATAEE A. J. Photochem. Photobiol., A, 2020, 391:112370.

    11. [11]

      HAN Bing-Yan, YAN Qin, XIN Ze, YAN Qi-Fang, JIANG Jing-Mei. Chin. J. Anal. Chem., 2020, 48(8):1025-1032.韩冰雁, 闫琴, 辛泽, 燕琪芳, 姜静美.分析化学, 2020, 48(8):1025-1032.

    12. [12]

      YAN X M, HE L, ZHOU C X, QIAN Z J, HONG P Z, SUN S L, LI C Y. Chem. Phys., 2019, 522:211-213.YAN X M, HE L, ZHOU C X, QIAN Z J, HONG P Z, SUN S L, LI C Y. Chem. Phys., 2019, 522:211-213.

    13. [13]

      LIU Q, LI J Y, LIU X, YUAN L, ZHAO L Z, CHANG Y T, LIU X G, PENG J J. Nanoscale, 2021, 13(32):13835-13844.LIU Q, LI J Y, LIU X, YUAN L, ZHAO L Z, CHANG Y T, LIU X G, PENG J J. Nanoscale, 2021, 13(32):13835-13844.

    14. [14]

      ZHOU Z P, SHU T, SUN Y F, SI H X, PENG P W, SU L, ZHANG X J. Biosens. Bioelectron., 2021, 192:113530.ZHOU Z P, SHU T, SUN Y F, SI H X, PENG P W, SU L, ZHANG X J. Biosens. Bioelectron., 2021, 192:113530.

    15. [15]

      ZHANG Z P, LI S, HUANG P C, FENG J Y, WU F Y. Microchim. Acta, 2019, 186(12):790-796.ZHANG Z P, LI S, HUANG P C, FENG J Y, WU F Y. Microchim. Acta, 2019, 186(12):790-796.

    16. [16]

      LIU J X, FENG J, YU Y, XU L D, LIU Q, ZHANG H, SHEN J L, QI W. J. Phys. Chem. C, 2020, 124(43):23844-23851.LIU J X, FENG J, YU Y, XU L D, LIU Q, ZHANG H, SHEN J L, QI W. J. Phys. Chem. C, 2020, 124(43):23844-23851.

    17. [17]

      LI B Z, WANG X, SHEN X, ZHU W Y, XU L, ZHOU X M. J. Colloid Interface Sci., 2016, 467:90-96.LI B Z, WANG X, SHEN X, ZHU W Y, XU L, ZHOU X M. J. Colloid Interface Sci., 2016, 467:90-96.

    18. [18]

      JALILI R, KHATAEE A. Microchim. Acta, 2018, 186(1):29-35.JALILI R, KHATAEE A. Microchim. Acta, 2018, 186(1):29-35.

    19. [19]

      HUANG Z Z, WANG M, GUO Z L, WANG H N, DONG H, YANG W S. ACS Omega, 2018, 3(10):12763-12769.HUANG Z Z, WANG M, GUO Z L, WANG H N, DONG H, YANG W S. ACS Omega, 2018, 3(10):12763-12769.

    20. [20]

      NADARS S, RATHOD V K. Enzyme Microb. Technol., 2018, 108:11-20.NADARS S, RATHOD V K. Enzyme Microb. Technol., 2018, 108:11-20.

    21. [21]

      SHU Y, YE Q Y, DAI T, XU Q, HU X Y. ACS Sens., 2021, 6(3):641-658.SHU Y, YE Q Y, DAI T, XU Q, HU X Y. ACS Sens., 2021, 6(3):641-658.

    22. [22]

      YIN X, YANG B, CHEN B B, HE M, HU B. Anal. Chem., 2019, 91(16):10596-10603.YIN X, YANG B, CHEN B B, HE M, HU B. Anal. Chem., 2019, 91(16):10596-10603.

    23. [23]

      ZHANG L Y, GAO Y, SUN S J, LI Z H, WU A G, ZENG L Y. J. Mater. Chem. B, 2020, 8(8):1739-1747.ZHANG L Y, GAO Y, SUN S J, LI Z H, WU A G, ZENG L Y. J. Mater. Chem. B, 2020, 8(8):1739-1747.

    24. [24]

      CUI Y J, SONG T, YU J C, YANG Y, WANG Z Y, QIAN G D. Adv. Funct. Mater., 2015, 25(30):4796-4802.CUI Y J, SONG T, YU J C, YANG Y, WANG Z Y, QIAN G D. Adv. Funct. Mater., 2015, 25(30):4796-4802.

    25. [25]

      ZHANG Z J, NGUYEN H T H, MILLER S A, PLOSKONKA A M, DECOSTE J B, COHEN S M. J. Am. Chem.Soc., 2016, 138(3):920-926.ZHANG Z J, NGUYEN H T H, MILLER S A, PLOSKONKA A M, DECOSTE J B, COHEN S M. J. Am. Chem.Soc., 2016, 138(3):920-926.

    26. [26]

      LIAN X Z, FANG Y, JOSEPH E, WANG Q, LI J L, BANERJEE S, LOLLAR C, WANG X, ZHOU H C. Chem.Soc. Rev., 2017, 46(11):3386-3401.LIAN X Z, FANG Y, JOSEPH E, WANG Q, LI J L, BANERJEE S, LOLLAR C, WANG X, ZHOU H C. Chem.Soc. Rev., 2017, 46(11):3386-3401.

    27. [27]

      XIA M F, SUI Y C, GUO Y, ZHANG Y D. Analyst, 2021, 146:904-910.XIA M F, SUI Y C, GUO Y, ZHANG Y D. Analyst, 2021, 146:904-910.

    28. [28]

      CAO F F, JU E G, LIU C Q, LI W, ZHANG Y, DONG K, LIU Z, REN J S, QU X G. Nanoscale, 2017, 9(12):4128-4134.CAO F F, JU E G, LIU C Q, LI W, ZHANG Y, DONG K, LIU Z, REN J S, QU X G. Nanoscale, 2017, 9(12):4128-4134.

    29. [29]

      JALILI R, IRANI-NEZHAD M H, KHATAEE A, JOO S W. Spectrochim. Acta, Part A, 2021, 262:120089.JALILI R, IRANI-NEZHAD M H, KHATAEE A, JOO S W. Spectrochim. Acta, Part A, 2021, 262:120089.

    30. [30]

      WANG H B, LI Y, BAI H Y, LIU Y M. Sens. Actuators, B, 2017, 259:204-210.WANG H B, LI Y, BAI H Y, LIU Y M. Sens. Actuators, B, 2017, 259:204-210.

    31. [31]

      CAO X Y, CHENG S S, YOU Y, ZHANG S M, XIAN Y Z. Anal. Chim. Acta, 2019, 1092:108-116.CAO X Y, CHENG S S, YOU Y, ZHANG S M, XIAN Y Z. Anal. Chim. Acta, 2019, 1092:108-116.

    32. [32]

      HIKOSOU D, SAITA S, MIYATA S, MIYAJI H, FURUIKE T, TAMURA H, KAWASAKI H. J. Phys. Chem. C, 2018, 122(23):12494-12501.HIKOSOU D, SAITA S, MIYATA S, MIYAJI H, FURUIKE T, TAMURA H, KAWASAKI H. J. Phys. Chem. C, 2018, 122(23):12494-12501.

  • 加载中
计量
  • PDF下载量:  13
  • 文章访问数:  777
  • HTML全文浏览量:  150
文章相关
  • 收稿日期:  2021-10-24
  • 修回日期:  2022-03-30
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章