Citation: HE Mao-Fang,  YAO Shu-Ting,  ZHANG Yu-Die,  WANG Xin,  YANG Da-Long,  WANG Qi-Rong,  QIN Bei. Preparation of Hyperbranched Boronate Affinity Adsorbent with Improved Binding Strength and Its Application in Enrichment of Catecholamines[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(5): 739-746. doi: 10.19756/j.issn.0253-3820.210804 shu

Preparation of Hyperbranched Boronate Affinity Adsorbent with Improved Binding Strength and Its Application in Enrichment of Catecholamines

  • Corresponding author: QIN Bei, qinbei0526@163.com
  • Received Date: 21 October 2021
    Revised Date: 15 January 2022

    Fund Project: Supported by the Shaanxi Provincial Department of Science and Technology Key R&D Program (No.2021ZDLSF03-05), the Shaanxi Provincial Department of Science and Technology Natural Science Basic Research Program (No.2021JQ-773), the Shaanxi Provincial Department of Education Natural Science Basic Research Program (No.21JK0894) and the Key Pharmacy Discipline of Xi'an Medical University (Xi'an Medical University[2019]96).

  • A kind of hyperbranched boronate affinity adsorbent was prepared by combination of diboronic acid ligand with polyethyleneimine (PEI) on Fe3O4 microspheres. The optimal adsorption capacity and selectivity was obtained when PEI1800 was employed. The binding affinity of the adsorbent with biomolecules with different couples of cis-diols was investigated. It was shown that the dissociation constant (Kd) between the adsorbent and adenosine was 10-4 mol/L. Compared with previous reports, the binding affinity was improved by 10 times. More interestingly, due to the synergistic binding of boronic acid groups with two or three couples of cis-diols, Kd between the adsorbent and chlorogenic acid, rosmarinic acid, salvianolic acid B and hyperoside was 10-5 mol/L. Compared with adenosine, catechol and dopamine, the binding affinity was further improved by 10 times. Based on the strong binding strength, the adsorbent was applied in the enrichment of catecholamines from human urine and rat serum with high specificity, recovery and sensitivity. The adsorbent was expected to be further applied in the enrichment of nucleosides and glycoproteins in biological samples.
  • 加载中
    1. [1]

      FOX M E, WIGHTMAN R M. Pharmacol. Rev., 2017, 69(1):12-32.

    2. [2]

      TOLMACHEVA V V, YARYKINA D I, GORBUNOVA M V, APYARI V V, DMITRIENKO S G, ZOLOTOV Y A. J. Anal. Chem., 2019, 74(11):1057-1063.

    3. [3]

    4. [4]

    5. [5]

    6. [6]

      RUAN Y J, SHI P, LEI Y, WEN G S, LI S, HUANG L, LIN X, YAO H. J. Electroanal. Chem., 2019, 848:113267-113273.

    7. [7]

      GORBUNOVAM V, GUTOROVAS V, BERSENEVAD A, APYARI V V, ZAITSEVV D, DMITRIENKO S G, ZOLOTOV Y A. Appl. Spectrosc. Rev., 2019, 54(8):631-652.

    8. [8]

      VAYTSEV V D, FURLETOV A A, APYARI V V, GARSHEVA V, DMITRIENKO S G, ZOLOTOV Y A. Microchim. Acta, 2020, 187(11):610-619.

    9. [9]

    10. [10]

    11. [11]

      HE M, WEI Y, WANG R, WANG C, ZHANG B, HAN L. Microchim. Acta, 2019, 186:683-691.

    12. [12]

      LIU Z, HE H. Acc. Chem. Res., 2017, 50(9):2185-2193.

    13. [13]

      WANG H, BIE Z, LU C, LIU Z. Chem. Sci., 2013, 4(11):4298-4303.

    14. [14]

      LI H, ZHANG X, ZHANG L, CHENG W, KONG F, FAN D, LI L, WANG W. Anal. Chim. Acta, 2017, 985:91-100.

    15. [15]

      LI D, XIA H, WANG L. Talanta, 2018, 184:235-243.

    16. [16]

      LI D, BIE Z. Analyst, 2017, 142(23):4494-4502.

    17. [17]

      LI H, ZHU S, CHENG T, WANG S, ZHU B, LIU X, ZHANG H. Microchim. Acta, 2016, 183(5):1779-1786.

    18. [18]

    19. [19]

      ZHANG G, ZHANG Y, JI C, MCDONALD T, WALTON J, GROEBERE A, STEENWYKR C, LIN Z. J. Chromatogr. B:Anal. Technol. Biomed. Life Sci., 2012, 895:186-190.

    20. [20]

      CHEN L Q, TANG Y, XU B, XU Z, SHEN J, ZHANG W Q. J. Chromatogr. B:Anal. Technol. Biomed. Life Sci., 2020, 1139:121983.

    21. [21]

      FONSECAB M, RODRIGUESM, CRISTÓVÃOA C, GONCALVES D, FORTUNA A, BERNARDINO L, FALCÃO A, ALVES G. J. Chromatogr. B:Anal. Technol. Biomed. Life Sci., 2017, 1049:51-59.

    22. [22]

      KUMAR A, HARTJ P, MCCALLEYD V. J. Chromatogr. A, 2011, 1218:3854-3861.

    23. [23]

      YANG X, HU Y, LI G. J.Chromatogr. A, 2014, 1342:37-43.

  • 加载中
    1. [1]

      Mochou GAOShan MENGJinzhong ZHANGWenhua FENGShuo DONGJianping CHENYanbao ZHAOLaigui YURongrong YINGXueyan ZOU . Dual‐surface capped hydroxyapatite nano‐amendment with tuned alternate long‐short chain configuration for efficient adsorption towards multi‐heavy metal ions in complex‐contaminated systems. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1427-1438. doi: 10.11862/CJIC.20240431

    2. [2]

      Yangrui XuYewei RenXinlin LiuHongping LiZiyang Lu . NH2-UIO-66 Based Hydrophobic Porous Liquid with High Mass Transfer and Affinity Surface for Enhancing CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-0. doi: 10.3866/PKU.WHXB202403032

    3. [3]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    4. [4]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    5. [5]

      Ruifeng CHENChao XUJianting JIANGTianshe YANG . Gold nanorod/zinc oxide/mesoporous silica nanoplatform: A triple-modal platform for synergistic anticancer therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2272-2282. doi: 10.11862/CJIC.20250117

    6. [6]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    7. [7]

      Guilan He Yaofeng Yuan . 手性二茂铁双膦配体Xyliphos的合成及应用. University Chemistry, 2025, 40(8): 130-137. doi: 10.12461/PKU.DXHX202409122

    8. [8]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    9. [9]

      Aiyi Xin Jiawei Li Xinyang Ran Chuanjiang Fu Zhiguo Wang . Collaborative Science and Education Based Experimental Design in Organic Chemistry: A Case Study of the Nucleophilic Substitution Reaction of 2-Hydroxymethyl-4,6-Di-Tert-Butylphenol. University Chemistry, 2025, 40(5): 366-375. doi: 10.12461/PKU.DXHX202407031

    10. [10]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    11. [11]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    12. [12]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    13. [13]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(11): 0-0.

    14. [14]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    15. [15]

      Shengwen XULonglong YANGHouji CAODeshuang TUXing WEIChangsheng LUHong YAN . Research progress on light-induced functionalization of polyhedral carborane clusters. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2187-2200. doi: 10.11862/CJIC.20250192

    16. [16]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    17. [17]

      Meihui Cai Yi Huang Xingxing Ma Qiuling Song . Exploring the Mysteries of the Petasis-Boronic Acid-Mannich Reaction. University Chemistry, 2025, 40(11): 184-190. doi: 10.12461/PKU.DXHX202412054

    18. [18]

      Haotong MaMingyu HengYang XuWei BiYingchun MiaoShuning Xiao . Synergistic carbon doping and Cu loading on boron nitride via microwave synthesis for enhanced atmospheric CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(11): 100132-0. doi: 10.1016/j.actphy.2025.100132

    19. [19]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    20. [20]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

Metrics
  • PDF Downloads(9)
  • Abstract views(734)
  • HTML views(48)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return