采用惰性气体增强空心针-环离子源放电的高场非对称波形离子迁移谱系统研究

曾鸿达 杜晓霞 潘家锴 王一飞 陈真诚 李华

引用本文: 曾鸿达, 杜晓霞, 潘家锴, 王一飞, 陈真诚, 李华. 采用惰性气体增强空心针-环离子源放电的高场非对称波形离子迁移谱系统研究[J]. 分析化学, 2022, 50(5): 680-691. doi: 10.19756/j.issn.0253-3820.210750 shu
Citation:  ZENG Hong-Da,  DU Xiao-Xia,  PAN Jia-Kai,  WANG Yi-Fei,  CHEN Zhen-Cheng,  LI Hua. Study on High-field Asymmetric Waveform Ion Mobility Spectrometry System Using Inert Gas to Enhance Discharge of Hollow Needle-Ring Ion Source[J]. Chinese Journal of Analytical Chemistry, 2022, 50(5): 680-691. doi: 10.19756/j.issn.0253-3820.210750 shu

采用惰性气体增强空心针-环离子源放电的高场非对称波形离子迁移谱系统研究

    通讯作者: 李华,E-mail:lihua@guet.edu.cn
  • 基金项目:

    国家自然科学基金项目(Nos.62163009,61864001)、广西自然科学基金重点项目(No.2021JJD170019)和广西自动检测技术与仪器重点实验室主任基金项目(No.YQ21111)资助。

摘要: 分辨力和灵敏度是表征高场非对称波形离子迁移谱(FAIMS)性能的两个重要参数。为同时提高平板型FAIMS的分辨力和灵敏度,本研究提出了一种惰性气体增强放电的空心针-环离子源。在标准大气压下,向针-环离子源通入惰性气体氦气和氩气,以提高离子源的电离效率,实现挥发性有机物的有效电离。在氮气流速1.8 L/min、射频电压(Radio frequency,RF)300 V的条件下,分别加入气体流速为0.2、0.3和0.4 L/min的氦气和氩气。与纯氮气相比,通入氦气后,丙酮、乙醇和乙酸乙酯的信号强度分别提高了19.07、17.26和10.85倍,通入氩气后的信号强度分别提高了4.86、13.37和4.63倍,且氦气、氩气和氮气的混合使FAIMS谱图出现了多个离子峰。实验结果表明,通入氦气和氩气均能同时提高分辨力和灵敏度,并且氦气的效果优于氩气。质谱实验结果和潘宁电离理论分析结果表明,电离产生的主要离子为单聚体离子和二聚体离子。本研究为提高FAIMS系统的分辨力和灵敏度提供了新方法。

English


    1. [1]

      HERNÁNDEZ M M, ROPARTZ D, GARCÍA A M, ROGNIAUX H, DERVILLY P G, BIZEC B L. Molecules, 2019, 24(15):2706.HERNÁNDEZ M M, ROPARTZ D, GARCÍA A M, ROGNIAUX H, DERVILLY P G, BIZEC B L. Molecules, 2019, 24(15):2706.

    2. [2]

      MILLER R A, NAZAROV E G, EICEMAN G A, THOMAS KING A. Sens. Actuators, A, 2001, 91(3):301-312.MILLER R A, NAZAROV E G, EICEMAN G A, THOMAS KING A. Sens. Actuators, A, 2001, 91(3):301-312.

    3. [3]

      LIU You-Jiang, CHEN Chi-Lai, ZHANG Le-Hua, ZHANG Xiao-Tian, WANG Hong-Wei, KONG De-Yi. Chin. J. Anal. Chem., 2014, 42(9):1259-1263. 刘友江, 陈池来, 张乐华, 张晓天, 王泓伟, 孔德义. 分析化学, 2014, 42(9):1259-1263.

    4. [4]

      GUO Da-Peng, WANG Yong-Huan, XU Tian-Bai, ZHANG Yuan, LI Ling-Feng, CHEN Jin-Kai, WANG Xiao-Zhi, LI Peng, LUO Ji-Kui. Chin. J. Anal. Chem., 2016, 44(4):617-624. 郭大鹏, 汪永欢, 徐天白, 张媛, 李灵锋, 陈金凯, 汪小知, 李鹏, 骆季奎. 分析化学, 2016, 44(4):617-624.

    5. [5]

      GUO Xing, ZHAO Zhong-Jun, DAI Jian-Xiong, HE Fei-Yao, LI Hong, WANG Jia-Yu, LIU Wei, WANG Xin, ZHANG Xin-Xue, YANG Yan-Ting, DUAN Yi-Xiang. Chin. J. Anal. Chem., 2021, 49(9):1461-1469. 郭星, 赵忠俊, 代渐雄, 贺飞耀, 李宏, 王佳宇, 刘薇, 王昕, 张歆雪, 杨燕婷, 段忆翔. 分析化学, 2021, 49(9):1461-1469.

    6. [6]

      COSTANZO M T, BOOCK J J, KEMPERMAN R H, WEI M S, YOST R A. Int. J. Mass Spectrom., 2016, 422:188-196.COSTANZO M T, BOOCK J J, KEMPERMAN R H, WEI M S, YOST R A. Int. J. Mass Spectrom., 2016, 422:188-196.

    7. [7]

      ARASARADNAM R P, MCFARLANE M, DAULTON E, SKINNER J, COVINGTON J. Dig. Liver Dis., 2016, 48(2):148-153.ARASARADNAM R P, MCFARLANE M, DAULTON E, SKINNER J, COVINGTON J. Dig. Liver Dis., 2016, 48(2):148-153.

    8. [8]

      SUN T, HE J, QIAN S, ZHENG Y, ZHANG K, LUO J, TIAN F. Sens. Actuators, B, 2020, 320:128595.SUN T, HE J, QIAN S, ZHENG Y, ZHANG K, LUO J, TIAN F. Sens. Actuators, B, 2020, 320:128595.

    9. [9]

      SANTIAGO B G, HARRIS R A, ISENBERG S L, RIDGEWAY M E, PILO A L, KAPLAN D A, GLISH G L. J. Am. Soc. Mass Spectrom., 2015, 26(10):1746-1753.SANTIAGO B G, HARRIS R A, ISENBERG S L, RIDGEWAY M E, PILO A L, KAPLAN D A, GLISH G L. J. Am. Soc. Mass Spectrom., 2015, 26(10):1746-1753.

    10. [10]

      WANG H W, CHEN C L, LIU Y J, ZHANG X T, KONG D Y, WANG X Z, LUO J K. Anal. Methods, 2015, 7(4):1401-1406.WANG H W, CHEN C L, LIU Y J, ZHANG X T, KONG D Y, WANG X Z, LUO J K. Anal. Methods, 2015, 7(4):1401-1406.

    11. [11]

      SHVARTSBURG A A, DANIELSON W F, SMITH R D. Anal. Chem., 2010, 82(6):2456-2462.SHVARTSBURG A A, DANIELSON W F, SMITH R D. Anal. Chem., 2010, 82(6):2456-2462.

    12. [12]

      SHVARTSBURG A A, SMITH R D. Anal. Chem., 2011, 83(1):23-29.SHVARTSBURG A A, SMITH R D. Anal. Chem., 2011, 83(1):23-29.

    13. [13]

      SHVARTSBURG A A, IBRAHIM Y M, SMITH R D. J. Am. Soc. Mass Spectrom., 2014, 25(3):480-489.SHVARTSBURG A A, IBRAHIM Y M, SMITH R D. J. Am. Soc. Mass Spectrom., 2014, 25(3):480-489.

    14. [14]

      KUKLYA A, ENGELHARD C, KERPEN K, TELGHEDER U. J. Anal. At. Spectrom., 2016, 31(8):1574-1581.KUKLYA A, ENGELHARD C, KERPEN K, TELGHEDER U. J. Anal. At. Spectrom., 2016, 31(8):1574-1581.

    15. [15]

      SANTIAGO B G, HARRIS R A, ISENBERG S L, GLISH G L. Analyst, 2015, 140(20):6871-6878.SANTIAGO B G, HARRIS R A, ISENBERG S L, GLISH G L. Analyst, 2015, 140(20):6871-6878.

    16. [16]

      SHVARTSBURG A A, SMITH R D. Anal. Chem., 2011, 83(23):9159-9166.SHVARTSBURG A A, SMITH R D. Anal. Chem., 2011, 83(23):9159-9166.

    17. [17]

      BARNETT D A, PURVES R W, ELLS B, GUEVREMONT R. J. Mass Spectrom., 2000, 35(8):976-980.BARNETT D A, PURVES R W, ELLS B, GUEVREMONT R. J. Mass Spectrom., 2000, 35(8):976-980.

    18. [18]

      SHI Hai-Xia, XU Qing, WANG Han, LIU You-Jiang, LI Shan, HU Jun, LI Yue, CHEN Chi-Lai. Spectrosc. Spectral Anal., 2019, 39(9):2713-2718. 石海峡, 徐青, 王晗, 刘友江, 李山, 胡俊, 李跃, 陈池来. 光谱学与光谱分析, 2019, 39(9):2713-2718.

    19. [19]

      WU Zhi-Yuan, YU Jian-Wen, LIU You-Jiang, CHEN Chi-Lai. Spectrosc. Spectral Anal., 2017, 37(10):3170-3174. 吴志远, 余健文, 刘友江, 陈池来. 光谱学与光谱分析, 2017, 37(10):3170-3174.

    20. [20]

      WANG H, LIU Y J, LI S, WANG X Z, DENG J Y, CHEN C L. Int. J. Mass Spectrom., 2019, 442:7-13.WANG H, LIU Y J, LI S, WANG X Z, DENG J Y, CHEN C L. Int. J. Mass Spectrom., 2019, 442:7-13.

    21. [21]

      KUKLYA A, REINECKE T, UTESCHIL F, KERPEN K, ZIMMERMANN S, TELGHEDER U. Talanta, 2017, 162:159-166.KUKLYA A, REINECKE T, UTESCHIL F, KERPEN K, ZIMMERMANN S, TELGHEDER U. Talanta, 2017, 162:159-166.

    22. [22]

      LIU Kun, TANG Fei, WANG Xiao-Hao, WEI Xue-Ye, XIONG Ji-Jun. Acta Phys.-Chim. Sin., 2009, 25(8):1662-1670. 刘坤, 唐飞, 王晓浩, 魏学业, 熊继军. 物理化学学报, 2009, 25(8):1662-1670.

    23. [23]

      LI Hua, YUN Hong-Mei, DU Xiao-Xia, ZENG Ruo-Sheng, JIANG Yong-Rong, CHENG Zhen-Cheng. Opt. Precis. Eng., 2019, 27(6):1255-1262. 李华, 云红梅, 杜晓霞, 曾若生, 蒋永荣, 陈真诚. 光学精密工程, 2019, 27(6):1255-1262.

    24. [24]

      PURVES R W, BARNETT D A, ELLS B, GUEVREMONT R. J. Am. Soc. Mass Spectrom., 2001, 12(8):894-901.PURVES R W, BARNETT D A, ELLS B, GUEVREMONT R. J. Am. Soc. Mass Spectrom., 2001, 12(8):894-901.

    25. [25]

      KARPAS Z, EICEMAN G A, KRYLOV E V, KRYLOVA N. Int. J. Ion Mobility Spectrom., 2006, 7(1):C8-C18.KARPAS Z, EICEMAN G A, KRYLOV E V, KRYLOVA N. Int. J. Ion Mobility Spectrom., 2006, 7(1):C8-C18.

    26. [26]

      SHVARTSBURG A A, DANIELSON W F, SMITH R D. Anal Chem., 2010, 82:2456-2462.SHVARTSBURG A A, DANIELSON W F, SMITH R D. Anal Chem., 2010, 82:2456-2462.

    27. [27]

      KRYLOV E V, NAZAROV E G, MILLER R A. Int. J. Mass Spectrom., 2007, 266(1-3):76-85.KRYLOV E V, NAZAROV E G, MILLER R A. Int. J. Mass Spectrom., 2007, 266(1-3):76-85.

    28. [28]

      HIRAOKA K, FUJIMAKI S, KAMBARA S, FURUYA H, OKAZAKI S. Rapid Commun. Mass Spectrom., 2004, 18(19):2323-2330.HIRAOKA K, FUJIMAKI S, KAMBARA S, FURUYA H, OKAZAKI S. Rapid Commun. Mass Spectrom., 2004, 18(19):2323-2330.

    29. [29]

      HIRAOKA K, FURUYA H, KAMBARA S, SUZUKI S, HASHIMOTO Y, TAKAMIZAWA A. Rapid Commun. Mass Spectrom., 2006, 20(21):3213-3222.HIRAOKA K, FURUYA H, KAMBARA S, SUZUKI S, HASHIMOTO Y, TAKAMIZAWA A. Rapid Commun. Mass Spectrom., 2006, 20(21):3213-3222.

    30. [30]

      ANDRADE F J, SHELLEY J T, WETZEL W C, WEBB M R, GAMEZ G, RAY S J, HIEFTJE G M. Anal. Chem., 2008, 80(8):2646-2653.ANDRADE F J, SHELLEY J T, WETZEL W C, WEBB M R, GAMEZ G, RAY S J, HIEFTJE G M. Anal. Chem., 2008, 80(8):2646-2653.

    31. [31]

      DZIDIC I, CARROLL D I, STILLWELL R N, HORNING E C. Anal. Chem., 2002, 48(12):1763-1768.DZIDIC I, CARROLL D I, STILLWELL R N, HORNING E C. Anal. Chem., 2002, 48(12):1763-1768.

    32. [32]

      HORNING E C, CARROLL D I, DZIDIC I, HAEGELE K D, HORNING M G, STILLWELL R N. J. Chromatogr. Sci., 1974, 12(11):725-729.HORNING E C, CARROLL D I, DZIDIC I, HAEGELE K D, HORNING M G, STILLWELL R N. J. Chromatogr. Sci., 1974, 12(11):725-729.

    33. [33]

      KAMBARA H, MITSUI Y, KANOMATA I. Anal. Chem., 1979, 51(9):1447-1452.KAMBARA H, MITSUI Y, KANOMATA I. Anal. Chem., 1979, 51(9):1447-1452.

    34. [34]

      WEI M S, KEMPERMAN R H, YOST R A. J. Am. Soc. Mass Spectrom., 2019, 30(5):731-742.WEI M S, KEMPERMAN R H, YOST R A. J. Am. Soc. Mass Spectrom., 2019, 30(5):731-742.

    35. [35]

      RORRER L C, YOST R A. Int. J. Mass Spectrom., 2015, 378:336-346.RORRER L C, YOST R A. Int. J. Mass Spectrom., 2015, 378:336-346.

    36. [36]

      RUOTOLO B T, MCLEAN J A, GILLIG K J, RUSSELL D H. J. Mass Spectrom., 2004, 39(4):361-367.RUOTOLO B T, MCLEAN J A, GILLIG K J, RUSSELL D H. J. Mass Spectrom., 2004, 39(4):361-367.

    37. [37]

      ZENG Y, TANG F, ZHAI Y D, WANG X H. Rev. Sci. Instrum., 2017, 88(9):1-10.ZENG Y, TANG F, ZHAI Y D, WANG X H. Rev. Sci. Instrum., 2017, 88(9):1-10.

  • 加载中
计量
  • PDF下载量:  6
  • 文章访问数:  691
  • HTML全文浏览量:  102
文章相关
  • 收稿日期:  2021-09-16
  • 修回日期:  2022-01-03
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章