Citation: HAN Yu-Jie,  DAI Zhi-Peng,  ZHENG Xiao-Fang,  GUO Yu-Jing. Institute of Environmental Science, Shanxi University, Taiyuan 030006, China[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(2): 206-216. doi: 10.19756/j.issn.0253-3820.210610 shu

Institute of Environmental Science, Shanxi University, Taiyuan 030006, China

  • Corresponding author: GUO Yu-Jing, guoyj@sxu.edu.cn
  • Received Date: 6 July 2021
    Revised Date: 24 September 2021

    Fund Project: Supported by the National Natural Science Foundation of China (No.21775095)

  • A core-shell structured polydopamine (PDA) functionalized LaCo0.21Ni1.59O3 composite (PDA@LaCo0.21Ni1.59O3) was synthesized, which combined the excellent electrocatalytic properties of LaCo0.21Ni1.59O3 and the abundant amino functional groups of PDA. On the basis of this, a novel electrochemical sensing platform for detection of heavy metal ions was constructed by modifying the composite on the glassy carbon electrode (PDA@LaCo0.21Ni1.59O3/GCE). Under optimized conditions, the sensing platform showed wide linear range and low detection limit for Cu2+, Hg2+ and Pb2+ ions (The linear ranges were 0.05-10.0, 0.005-5.0 and 0.5-2.0 μmol/L, and the detection limits were 67.70, 8.68 and 52.0 nmol/L for Cu2+, Hg2+ and Pb2+ ions, respectively). The constructed sensing platform could be used for simultaneous detection of Cu2+, Hg2+ and Pb2+. This method provided a new strategy for the detection of heavy metals in water environment.
  • 加载中
    1. [1]

    2. [2]

      RAJABI M, ABOLHOSSEINI M, HOSSEINI-BANDEGHARAEI A, HEMMATI M, GHASSAB N. Microchem. J., 2020, 159: 105450.

    3. [3]

      DENG Q S, YANG C, ZHENG H T, LIU J X, MAO X F, HU S H, ZHU Z L. J. Anal. Atom. Spectrom., 2019, 34(9): 1786-1793.

    4. [4]

      MANOUSI N, DELIYANNI E, ZACHARIADIS G. Appl. Sci., 2020, 10(23): 8722.

    5. [5]

      QIN J X, SU Z, MAO Y H, LIU C C, QI B, FANG G Z, WANG S. Ecotoxicol. Environ. Saf., 2021, 208: 111729.

    6. [6]

      CHEN B H, JIANG S J, SHAAYAM A C. Food Chem., 2020, 324: 126698.

    7. [7]

    8. [8]

      CHENG Z, BAI W S, JIN Y, ZHENG J B. Talanta, 2021, 323: 122405.

    9. [9]

      LU Y Y, LIANG X Q, XU J M. Sens. Actuators, B, 2018, 273: 1146-1155.

    10. [10]

      LU M X, DENG Y J, LUO Y, LV J P, LI T B, XU J. CHEN S W, WANG J Y. Anal. Chem., 2019, 91(1): 888-895.

    11. [11]

      BANSOD B, KUMAR T, THAKUR R, RANA S, SINGH I. Biosens. Biolectron., 2017, 94: 443-455.

    12. [12]

      CLARA P R, JULIO B A, NURIA S, MANUEL D C J, CRISTINA A, JOAN D P, MIQUEL E. Sensors, 2017,17(6): 1458.

    13. [13]

      GUAN P, GUO P R, LIU N, ZHANG F, LEI Y Q. Analyst, 2018, 143(18): 4436-4441.

    14. [14]

      WANG L L, LEI T, REN Z X, JIANG X, YANG X J, BAI H P, WANG S X. J. Electronal. Chem., 2020, 864:114065.

    15. [15]

      LI S S, CHENG X L, XU Q Q, ZHOU W Y, ZHANG Y X, YANG M. Electrochim. Acta, 2020, 360: 136991.

    16. [16]

      YAO L L, GAO S J, LIU S, BI Y L, WANG R R, QU H, WU Y E, MAO Y, ZHENG L. ACS Appl. Mater. Interfaces, 2020, 12(5): 6268-6275.

    17. [17]

      ZHANG Y Y, YU H, LIU T, LI W J, HAO X D, LU Q, LIANG X S, LIU F M, LIU F M, WANG C G,YANG C H, ZHU H Q, LU G Y. Anal. Chim. Acta, 2020, 1124: 166-175.

    18. [18]

      XIE F, YANG M, JIANG M, HUANG X J, LIU W Q, XIE P H. TrAC-Trends Anal. Chem., 2019, 119: 115624.

    19. [19]

      ZHOU J, WANG Q, LIU F L, XIONG S Q. Electrocatalysis, 2021, 12(4): 381-389.

    20. [20]

      OULARBI L, TURMINE M, SALIH F E, EL RHAZI M. J. Environ. Chem. Eng., 2020, 8(3): 103774.

    21. [21]

      TAJIK S, BEITOLLAHI H, NEIAD F G, SHEIKHSHOAIE I, NUGRAHA A S, JANG H W, YAMAUCHI Y, SHOKOUHIMEHR M. J. Mater. Chem. A, 2021, 9(13): 8195-8220.

    22. [22]

      HUI X, SHARIFUZZAMAN M, SHARMA S, XUAN X, ZHANG S P, KO S G, YOON S H, PARK J Y. ACS Appl. Mater. Interfaces, 2020, 12(43): 48928-48937.

    23. [23]

      ZHU X L, LIU B C, HOU H J, HUANG Z Y, ZEINU K M, HUANG L, YUAN X Q, GUO D B, HU J P,YANG J K. Electrochim. Acta, 2017, 248: 46-57.

    24. [24]

      SUVINA V, KOKULNATHAN T, WANG T J, BALAKRISHNA R G. Microchim. Acta, 2020, 187(3): 189.

    25. [25]

      SUVINA V, KOKULNATHAN T, WANG T J, BALAKRISHNA R G. Ecotoxicol. Environ. Saf., 2020, 190: 110098.

    26. [26]

      CHEN T W, RAMACHANDRAN R, CHEN S M, KAVITHA N, DINAKARAN K, KANNAN R, ANUSHYA G, BHUVANA N, JEYAPRAGASAM T, MARIYAPPAN V, RANI S D, CHITRA S. Catalysts, 2020, 10(8): 938.

    27. [27]

      WANG H, QI J, YANG N L. Angew. Chem., Int. Ed., 2020, 59(44): 19691-19695.

    28. [28]

    29. [29]

      SONG W Q, POYRAZ A S, MENG Y T, REN Z, CHEN S Y, SUIB S L. Chem. Mater., 2014, 26: 4629-4639.

    30. [30]

      CHEN X, BAO X Y, XIAO Y, ZAHNG C S, TANG L N, YAO L, GUI G D, YANG Y. Appl. Surf. Sci., 2019, 466: 989-999.

    31. [31]

      ZHU C Z, DAN W, LEUBNER S, OSCHATZ M, LIU W, HOLZSCHUH M, SIMON F, KASKEL S, EYCHMULLER A. Chem. Commun., 2015, 51: 7851-7854.

    32. [32]

      MA R G, ZHOU Y, CHEN Y F, LI P X, LIU Q, WANG J C. Angew. Chem., Int. Ed., 2015, 54(49): 14723-14727.

    33. [33]

      LIAO J J, ZHANG J P, WANG C Z. Anal. Chim. Acta, 2018, 1022: 37-44.

    34. [34]

      PEREZ-RAFOLS C, BASTOS-ARRIETA J, SERRANO N. Sensors, 2017, 14(6): 1458.

    35. [35]

      PRASONGPORN R, EAKKASIT P, ORAWON C. Electroanalysis, 2017, 29(4): 1022-1030.

    36. [36]

      ZHOU S F, WANG J J, GAN L. J. Alloys Compd., 2017, 721: 492-500.

    37. [37]

    38. [38]

      LU M X, DENG Y G, LUO Y. Anal. Chem., 2019, 91(1): 888-895.

  • 加载中
    1. [1]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    2. [2]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    3. [3]

      Lixing ZHANGYaowen WANGXu HANJunhong ZHOUJinghui WANGLiping LIGuangshe LI . Research progress in the synthesis of fluorine-containing perovskites and their derivatives. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1689-1701. doi: 10.11862/CJIC.20250007

    4. [4]

      Yao MaXin ZhaoHongxu ChenWei WeiLiang Shen . Progress and Perspective of Perovskite Thin Single Crystal Photodetectors. Acta Physico-Chimica Sinica, 2025, 41(4): 100030-0. doi: 10.3866/PKU.WHXB202309045

    5. [5]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    6. [6]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    7. [7]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    8. [8]

      Rui LiHuan LiuYinan JiaoShengjian QinJie MengJiayu SongRongrong YanHang SuHengbin ChenZixuan ShangJinjin Zhao . Emerging Irreversible and Reversible Ion Migrations in Perovskites. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-0. doi: 10.3866/PKU.WHXB202311011

    9. [9]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    10. [10]

      Ke ZhaoZhen LiuLuyao LiuChangyuan YuJingshun PanXuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029

    11. [11]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    12. [12]

      Xuechen HuQiuying XiaFan YueXinyi HeZhenghao MeiJinshi WangHui XiaXiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046

    13. [13]

      Ping YeLingshuang QinMengyao HeFangfang WuZengye ChenMingxing LiangLibo Deng . Potential of Zero Charge-Mediated Electrochemical Capture of Cadmium Ions from Wastewater by Lotus Leaf-Derived Porous Carbons. Acta Physico-Chimica Sinica, 2025, 41(3): 100023-0. doi: 10.3866/PKU.WHXB202311032

    14. [14]

      Zhuo WangXue BaiKexin ZhangHongzhi WangJiabao DongYuan GaoBin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 100026-0. doi: 10.3866/PKU.WHXB202405002

    15. [15]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    16. [16]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    17. [17]

      Yun ChenDaijie DengLi XuXingwang ZhuHenan LiChengming Sun . Covalent bond modulation of charge transfer for sensitive heavy metal ion analysis in a self-powered electrochemical sensing platform. Acta Physico-Chimica Sinica, 2026, 42(1): 100144-0. doi: 10.1016/j.actphy.2025.100144

    18. [18]

      Ximeng CHIJianwei WEIYunyun WANGWenxin DENGJiayi DAIXu ZHOU . First-principles study of the electronic structure and optical properties of Au and I doped-inorganic lead-free double perovskite Cs2NaBiCl6. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1371-1379. doi: 10.11862/CJIC.20240401

    19. [19]

      Jia-He Li Yu-Ze Liu Jia-Hui Ma Qing-Xiao Tong Jian-Ji Zhong Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080

    20. [20]

      Zhen FANJiayan WANGWenhao ZHUXiuchun ZHANGYang WANGHao LIZeyuan WANGSongzhi ZHENGWeihai SUN . Fabrication of CsPbBr3 perovskite solar cells using buried polyvinylidene fluorideinterface modification method. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2464-2478. doi: 10.11862/CJIC.20250191

Metrics
  • PDF Downloads(15)
  • Abstract views(1030)
  • HTML views(205)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return