Citation: WANG Hai-Yan,  ZHANG Xi-Mei,  CUI Xiu-Xiu,  KANG Peng,  ZHANG Yan,  ZHANG Jia-Ying,  GE Wu-Peng. Structural Analysis of Human Milk Oligosaccharides via High Resolution Mass Spectrometry and Optimization of Chromatographic Separation Conditions[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(2): 278-289. doi: 10.19756/j.issn.0253-3820.210603 shu

Structural Analysis of Human Milk Oligosaccharides via High Resolution Mass Spectrometry and Optimization of Chromatographic Separation Conditions

  • Corresponding author: GE Wu-Peng, josephge@nwafu.edu.cn
  • Received Date: 1 July 2021
    Revised Date: 25 November 2021

    Fund Project: Supported by the School-Enterprise Cooperation Project (No.K4030220076)

  • Human milk oligosaccharides (HMOs) are closely related to the growth and development of infants in early life. In this study, the structures of 19 HMOs (16 neutral HMOs and 3 sialylated HMOs) were analyzed by ultra-high performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS). Based on the cleavage rules of oligosaccharide isomers, the differences of fragment ions among the four groups of isomers were discussed. The separation effects of HMOs isomers under three different UHPLC conditions were compared, which provided scientific basis for the structural analysis of complex HMOs isomers and the selection of UHPLC conditions.
  • 加载中
    1. [1]

      STAHL B, THURL S, ZENG J, KARAS M, HILLENKAMP F, STEUP M, SAWATZKIT G. Anal. Biochem., 1994, 223(2): 218-226.

    2. [2]

      SOUSA Y R F, MEDEIROS L B, PINTADO M M E, QUEIROGA R C R E. Trends Food Sci. Technol., 2019, 92: 152-161.

    3. [3]

      ZIVKOVIC A M, GERMAN J B, LEBRILLA C B, MILLS D A. Proc. Natl. Acad. Sci. U. S. A., 2011,108(Suppl 1): 4653-4658.

    4. [4]

      THURL S, MUNZERT M, HENKER J, BOEHM G, MULLER-WERNER B, JELINEK J, STAHL B. Br. J. Nutr., 2010, 104(9): 1261-1271.

    5. [5]

      MEHRA R, KELLY P. Int. Dairy J., 2006, 16(11): 1334-1340.

    6. [6]

    7. [7]

      ALDREDGE D L, GERONIMO M R, HUA S, NWOSU C C, LEBRILLA C B, BARILE D. Glycobiology, 2013, 23(6): 664-676.

    8. [8]

      CHAI W, PISKAREV V E, ZHANG Y, LAWSON A M, KOGELBERG H. Arch. Biochem. Biophys., 2005,434(1): 116-127.

    9. [9]

      KAILEMIA M J, RUHAAK L R, LEBRILLA C B, AMSTER I J. Anal. Chem., 2014, 86(1): 196-212.

    10. [10]

      ELWAKIEL M, HAGEMAN J A, WANG W, SZETO I M, VAN GOUDOEVER J B, HETTINGA K A,SCHOLS H A. J. Agric. Food Chem., 2018, 66(27): 7036-7043.

    11. [11]

      MARTIN-ORTIZ A, BARILE D, SALCEDO J, MORENO F J, CLEMENTE A, RUIZ-MATUTE A I, SANZ M L. J. Agric. Food Chem., 2017, 65(17): 3523-3531.

    12. [12]

    13. [13]

    14. [14]

    15. [15]

    16. [16]

    17. [17]

      WEI J, WANG Z A, WANG B, JAHAN M, WANG Z F, WYNN P C, DU Y G. Sci. Rep., 2018, 8: 4688.

    18. [18]

      LU J, ZHANG Y, SONG B, ZHANG S W, PANG X Y, SARI R N, LIU L, WANG J H, LV J P. Carbohydr. Polym., 2020, 235: 115965.

    19. [19]

      XU G, DAVIS J C, GOONATILLEKE E, SMILOWITZ J T, GERMAN J B, LEBRILLA C B. J. Nutr., 2017,147(1): 117-124.

    20. [20]

      RAMAKRISHNAN B, BOEGGEMAN E, QASBA P K. Biochem. Biophys. Res. Commun., 2002, 291(5): 1113-1118.

    21. [21]

      KOBATA A. Chang Gung Med. J., 2003, 26(9): 621-636.

    22. [22]

      MCGUIRE M, MCGUIRE M A, BODE L. Prebiotics and Probiotics in Human Milk: Origins and Functions of Milk-Borne Oligosaccharides and Bacteria. USA: Academic Press, 2016: 24-39.

    23. [23]

      WU S, TAO N, GERMAN J B, GRIMM R, LEBRILLA C B. J. Proteome Res., 2010, 9: 4138-4151.

    24. [24]

      BODE L. Glycobiology, 2012, 22(9): 1147-1162.

    25. [25]

      AYECHU-MURUZABAL V, VAN STIGT A H, MANK M, WILLEMSEN L E M, STAHL B, GARSSEN J,VAN'T LAND B. Front. Pediatr., 2018, 6: 239.

    26. [26]

      DOMON B, COSTELLO C E. Glycoconjugate J., 1988, 5(4): 397-405.

    27. [27]

      CHAI W, PISKAREV V, LAWSON A M. Anal. Chem., 2001, 73(3): 651-657.

    28. [28]

      WU S, GRIMM R, GERMAN J B, LEBRILLA C B. J. Proteome Res., 2011, 10: 856-868.

    29. [29]

      ZHANG H, ZHANG S, TAO G, ZHANG Y, MULLOY B, ZHAN X, CHAI W. Anal. Chem., 2013, 85(12): 5940-5949.

    30. [30]

      BLACK B A, LEE V S, ZHAO Y Y, HU Y, CURTIS J M, GANZLE M G. J. Agric. Food Chem., 2012,60(19): 4886-4894.

    31. [31]

      CHAI W, LAWSON A M, PISKAREV V. J. Am. Soc. Mass Spectrom., 2002, 13: 670-679.

    32. [32]

      WHEELER S F, HARVEY D J. Anal. Chem., 2000, 70(20): 5027-5039.

    33. [33]

      VAZQUEZ E, SANTOS-FANDILA A, BUCK R, RUEDA R, RAMIREZ M. Br. J. Nutr., 2017, 117(2): 237-247.

    34. [34]

      JANTSCHER-KRENN E, TREICHLER C, BRANDL W, SCHONBACHER L, KOFELER H, VAN POPPEL M N. Am. J. Clin. Nutr., 2019, 110(6): 1335-1343.

    35. [35]

      JAMES K, BOTTACINI F, CONTRERAS J I S, VIGOUREUX M, EGAN M, MOTHERWAY M O C, HOLMES E, VAN SINDEREN D. Sci. Rep., 2019, 9: 15427.

    36. [36]

      LIU Z, AULDIST M, WRIGHT M, COCKS B, ROCHFORT S. J. Agric. Food Chem., 2017, 65(7): 1307-1313.

  • 加载中
    1. [1]

      Yuqiao Zhou Weidi Cao Shunxi Dong Lili Lin Xiaohua Liu . Study on the Teaching Reformation of Practical X-ray Crystallography. University Chemistry, 2024, 39(3): 23-28. doi: 10.3866/PKU.DXHX202303003

    2. [2]

      Jianquan Liu Xiangshan Wang . Teaching Design and Practice of Naming Rules for Circular Isomer Configuration under the Guidance of Information Literacy. University Chemistry, 2025, 40(7): 352-358. doi: 10.12461/PKU.DXHX202409082

    3. [3]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    4. [4]

      Xiaolei Jiang Fangdong Hu . Exploring the Mirror World in Organic Chemistry: the Teaching Design of “Enantiomers” from the Perspective of Curriculum and Ideological Education. University Chemistry, 2024, 39(10): 174-181. doi: 10.3866/PKU.DXHX202402052

    5. [5]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

    6. [6]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

    7. [7]

      Yifan Xie Liyun Yao Ruolin Yang Yuxing Cai Yujie Jin Ning Li . Exploration and Practice of Online and Offline Hybrid Teaching Mode in High-Performance Liquid Chromatography Experiment. University Chemistry, 2025, 40(11): 100-107. doi: 10.12461/PKU.DXHX202412133

    8. [8]

      Changsheng AnTao Liu . Decoding SEI chemistry at the lithium-metal potential. Acta Physico-Chimica Sinica, 2025, 41(9): 100101-0. doi: 10.1016/j.actphy.2025.100101

    9. [9]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    10. [10]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    11. [11]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    12. [12]

      Wen Tang Luyu Sui Qian Chen Jun Shao Xinwen Peng Jianwen Jiang Shuiliang Chen . Project-based Teaching of “the Condensed State of Polymers”: Unveiling the Lithium-Ion Battery Separator. University Chemistry, 2025, 40(11): 115-126. doi: 10.12461/PKU.DXHX202412108

    13. [13]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

    14. [14]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    15. [15]

      Qiying Xia Guokui Liu Yunzhi Li Yaoyao Wei Xia Leng Guangli Zhou Aixiang Wang Congcong Mi Dengxue Ma . Construction and Practice of “Teaching-Learning-Assessment Integration” Model Based on Outcome Orientation: Taking “Structural Chemistry” as an Example. University Chemistry, 2024, 39(10): 361-368. doi: 10.3866/PKU.DXHX202311007

    16. [16]

      Yufan ZHAOJinglin YOUShixiang WANGGuopeng LIUXiang XIAYingfang XIEMeiqin SHENGFeiyan XUKai TANGLiming LU . Raman spectroscopic quantitative study of the melt microstructure in binary Li2O-GeO2 functional crystals. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1533-1544. doi: 10.11862/CJIC.20250063

    17. [17]

      Lisen Sun Yongmei Hao Zhen Huang Yongmei Liu . Experimental Teaching Design for Viscosity Measurement Serves the Optimization of Operating Conditions for Kitchen Waste Treatment Equipment. University Chemistry, 2024, 39(2): 52-56. doi: 10.3866/PKU.DXHX202307063

    18. [18]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    19. [19]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    20. [20]

      Asif Hassan RazaShumail FarhanZhixian YuYan Wu . Double S-Scheme ZnS/ZnO/CdS Heterostructure Photocatalyst for Efficient Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-0. doi: 10.3866/PKU.WHXB202406020

Metrics
  • PDF Downloads(9)
  • Abstract views(1025)
  • HTML views(157)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return