Citation: TANG Jin-Lan,  BAO Yi-Lin,  WU Jin-Jin,  SHANG Lin-Wei,  SHANG Hui,  XU Zhi-Bing,  WANG Hui-Jie,  YIN Jian-Hua. Study on Breast Tissue Cancerization by Polarized Micro-Raman Spectroscopy[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(12): 2048-2054. doi: 10.19756/j.issn.0253-3820.210602 shu

Study on Breast Tissue Cancerization by Polarized Micro-Raman Spectroscopy

  • Corresponding author: WANG Hui-Jie,  YIN Jian-Hua, 
  • Received Date: 1 July 2021
    Revised Date: 27 September 2021

    Fund Project: Supported by the National Natural Science Foundation of China (No.61378087), the Six Talent Peaks Project of Jiangsu Province, China (No.SWYY-034) and the Open Fund for 2020 Graduate Innovation Base (Laboratory) of Nanjing University of Aeronautics and Astronautics (No.kfjj20200315).

  • The polarized micro-Raman spectra (PMRS) technique can provide information about the orientations and ordering of molecules in samples without any special sample preparation or staining. In this work, PMRS was used to collect Raman spectra of normal and cancerous breast tissues. By spectral analysis and difference analysis, it was found that PMRS could significantly amplify the differences of main characteristic bands other than amide Ⅰ band, even the bands of proline (921 cm-1) and phenylalanine (1032 cm-1) which had unobvious difference in conventional micro-Raman spectroscopy. The results indicated that PMRS was much efficient to identify breast cancer tissue. The bimodal intensity ratio of the amide Ⅲ band (I1247/I1269) was lower than 1 in cancerous tissues, no matter excited with parallel or perpendicular polarized light, but it was lower and greater than 1 in normal tissue when excited with parallel and perpendicular polarized light, respectively, indicating that collagen fibers lost their original orientation in cancerous tissues. Meanwhile, it was proved that this phenomenon was related to the increase in the content of hydroxylated amino acids of collagen fibers after canceration. The information obtained in this study helped to elucidate the molecular mechanism of induced intravasation during breast cancer invasion more clearly. It suggested that PMRS had more potential to be developed as an effective tool for clinical diagnosis of breast cancer, to assist in the clinical diagnosis and treatment of invasive breast cancer.
  • 加载中
    1. [1]

      FERLAY J, COLOMBET M, SOERJOMATARAM I, PARKIN DONALD M, PIÑEROS M, ZNAOR A, BRAY F. Int. J. Cancer, 2021, 149(4):778-789.

    2. [2]

      LECHAGO J. Arch. Pathol. Lab. Med., 2005, 129(12):1529-1531.

    3. [3]

    4. [4]

    5. [5]

      BARROSO E M, SCHUT T B, CASPERS P J, SANTOS I P, WOLVIUS E B, KOLJENOVIĆS, PUPPELS G J.J. Raman Spectrosc., 2018, 49(4):699-709.

    6. [6]

    7. [7]

      TANAKA M, YOUNG R J. J. Mater. Sci., 2006, 41(3):963-991.

    8. [8]

      LY E, PIOT O, DURLACH A, BERNARD P, MANFAIT M. Appl. Spectrosc., 2008, 62(10):1088-1094.

    9. [9]

      DANIEL A, PRAKASARAO A, DORNADULA K, GANESAN S. Spectrochim. Acta, Part A, 2016, 152:58-63.

    10. [10]

      ZHAO J, LUI H, MCLEAN D I, ZENG H. Appl. Spectros., 2007, 61(11):1225-1232.

    11. [11]

      SHANG L W, MA D Y, FU J J, LU Y F, YIN J H. Biomed. Opt. Express, 2020, 11(7):3673-3683.

    12. [12]

      LAZARO-PACHECO D, SHAABAN A M, REHMAN S, REHMAN I. Appl. Spectrosc. Rev., 2019, 55(1):1-37.

    13. [13]

      REHMAN S, MOVASAGHI Z, TUCKER A T, JOEL S P, REHMAN I U. J. Raman Spectrosc., 2010, 38(10):1345-1351.

    14. [14]

      KNEIPP J, SCHUT T B, KLIFFEN M, MENKE-PLUIJMERS M, PUPPELS G. Vib. Spectrosc., 2003, 32(1):67-74.

    15. [15]

      TALARI A C S, MOVASAGHI Z, REHMAN S, REHMAN I. Appl. Spectrosc. Rev., 2015, 50(1):46-111.

    16. [16]

      MEUTTER J D, GOORMAGHTIGH E. Eur. Biophys. J., 2021, 50:641-651.

    17. [17]

      BONIFACIO A, SERGO V. Vib.Spectrosc., 2010, 53(2):314-317.

    18. [18]

      HAN W, CHEN S, WEI Y, FAN Q, LIU L. Proc. Natl. Acad. Sci. U. S. A., 2016, 113(40):11208-11213.

    19. [19]

      HOLMES D F, LU Y, STARBORG T, KADLER K E. Curr. Top. Dev. Bio., 2018, 130:107-142.

    20. [20]

      RITCHIE R O, BUEHLER M J, HANSMA P. Phys.Today, 2009, 62(6):41-47.

    21. [21]

      SALO A M, MYLLYHARJU J. Exp. Dermatol., 2021, 30(1):38-49.

    22. [22]

      RUNEL G, LOPEZ-RAMIREZ N, CHLASTA J, MASSE I. Cells, 2021, 10(4):887-900.

  • 加载中
    1. [1]

      Jialin Xie Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Life’s Guardian Angel: Progesterone. University Chemistry, 2024, 39(10): 416-419. doi: 10.12461/PKU.DXHX202403068

    2. [2]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    3. [3]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    4. [4]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    5. [5]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    6. [6]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    7. [7]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    8. [8]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    9. [9]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    10. [10]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    11. [11]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    12. [12]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    13. [13]

      Wenkai Chen Yunjia Shen Xiangmeng Kong Yanli Zeng . Quantum Chemistry Calculation of Key Physical Quantity in Circularly Polarized Luminescence: Introducing an Exploratory Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 83-91. doi: 10.12461/PKU.DXHX202405018

    14. [14]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    15. [15]

      Wenliang Wang Weina Wang Lixia Feng Nan Wei Sufan Wang Tian Sheng Tao Zhou . Proof and Interpretation of Severe Spectroscopic Selection Rules. University Chemistry, 2025, 40(3): 415-424. doi: 10.12461/PKU.DXHX202408063

    16. [16]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    17. [17]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049

    18. [18]

      Yang Wang Yunpeng Fu Xiaoji Liu Guotao Zhang Guobin Li Wanqiang Liu Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113

    19. [19]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    20. [20]

      Peipei Sun Jinyuan Zhang Yanhua Song Zhao Mo Zhigang Chen Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001

Metrics
  • PDF Downloads(5)
  • Abstract views(806)
  • HTML views(203)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return