银-金双金属纳米管的可控制备及其对汗液中葡萄糖的无创检测

高难 王帅澎 刘旭 夏大成 蔡志伟 常钢 何云斌

引用本文: 高难, 王帅澎, 刘旭, 夏大成, 蔡志伟, 常钢, 何云斌. 银-金双金属纳米管的可控制备及其对汗液中葡萄糖的无创检测[J]. 分析化学, 2021, 49(10): 1640-1648. doi: 10.19756/j.issn.0253-3820.210601 shu
Citation:  GAO Nan,  WANG Shuai-Peng,  LIU Xu,  XIA Da-Cheng,  CAI Zhi-Wei,  CHANG Gang,  HE Yun-Bin. Controllable Preparation of Ag-Au Bimetallic Nanotubes for Non-invasive Detection of Glucose in Sweat[J]. Chinese Journal of Analytical Chemistry, 2021, 49(10): 1640-1648. doi: 10.19756/j.issn.0253-3820.210601 shu

银-金双金属纳米管的可控制备及其对汗液中葡萄糖的无创检测

    通讯作者: 常钢,E-mail:changgang@hubu.edu.cn; 何云斌,E-mail:ybhe@hubu.edu.cn
  • 基金项目:

    国家自然科学基金项目(Nos.51672074,11774082,11975093)、湖北省自然科学基金项目(No.2019CFA006)和武汉市应用基金前沿项目(No.201801041011287)资助。

摘要: 实时监测血糖水平对糖尿病患者的诊断和治疗具有重要意义,而传统的酶法微创测定存在稳定性低、体验感差等问题。本研究以银纳米线为模板,采用一步伽伐尼置换反应(Galvanic replacement reaction)制备高质量的银-金双金属纳米管(Ag-Au BMNTs),实现了对葡萄糖的无酶、无创测定。通过优化HAuCl4的含量,可调控Ag-Au BMNTs的形貌及组分。研究结果表明,Ag-Au BMNTs检测葡萄糖具有检测范围宽(1 μmol/L~3.79 mmol/L,3.79~13.79 mmol/L)、灵敏度高(154.09 μA/(mmol/L)、60.77 μA/(mmol/L)和检出限低(1 μmol/L)等特点。同时,此传感器表现出良好的抗干扰性能和稳定性,可用于人体汗液中葡萄糖含量的准确测定。基于Ag-Au BMNTs的电化学传感器在无酶、无创血糖检测中具有良好的潜在应用价值。

English


    1. [1]

      SU S, LU W Z, LIA J, HAO Q, LIU W, ZHU C F, SHEN X Z, SHI.J Y, WANG L H. New J. Chem., 2018, 42:6750-6755.SU S, LU W Z, LIA J, HAO Q, LIU W, ZHU C F, SHEN X Z, SHI.J Y, WANG L H. New J. Chem., 2018, 42:6750-6755.

    2. [2]

      XU J, XUK K, HAN Y, WANG D, LI X, HU T, YI H, NI Z H. Analyst, 2020, 145:5141-5147.XU J, XUK K, HAN Y, WANG D, LI X, HU T, YI H, NI Z H. Analyst, 2020, 145:5141-5147.

    3. [3]

      SHAO M F, XU X Y, HAN J B, ZHAO J W, SHI W Y, KONG X G, WEI M, EVANS D G, DUAN X. Langmuir, 2011, 27(13):8233-8240.SHAO M F, XU X Y, HAN J B, ZHAO J W, SHI W Y, KONG X G, WEI M, EVANS D G, DUAN X. Langmuir, 2011, 27(13):8233-8240.

    4. [4]

      CASH K J, CLARK H A. Trends Mol. Med., 2010, 16(12):584-593.CASH K J, CLARK H A. Trends Mol. Med., 2010, 16(12):584-593.

    5. [5]

      TIAN K, PRESTGAID M, TIWARI A. Mater. Sci. Eng., C, 2014, 41:100-118.TIAN K, PRESTGAID M, TIWARI A. Mater. Sci. Eng., C, 2014, 41:100-118.

    6. [6]

      LIU J, SHEN X, BAIMANOV D, WANG L, XIAO Y, LIU H, LI Y, GAO X, ZHAO Y, CHEN C. ACS Appl. Mater. Interfaces, 2019, 11(3):2647-2654.LIU J, SHEN X, BAIMANOV D, WANG L, XIAO Y, LIU H, LI Y, GAO X, ZHAO Y, CHEN C. ACS Appl. Mater. Interfaces, 2019, 11(3):2647-2654.

    7. [7]

      KIM H S, LEE J S, KIM M I. J.Nanosci. Nanotechnol., 2020, 20(9):5333-5337.KIM H S, LEE J S, KIM M I. J.Nanosci. Nanotechnol., 2020, 20(9):5333-5337.

    8. [8]

      JANG H, OH J, KI H, KIM M G. Analyst, 2020, 145(17):5740-5743.JANG H, OH J, KI H, KIM M G. Analyst, 2020, 145(17):5740-5743.

    9. [9]

      CHANG G, SHU H H, JI K, ORAMA M, LIU X, HE Y B. Appl. Surf. Sci., 2014, 288:524-529.CHANG G, SHU H H, JI K, ORAMA M, LIU X, HE Y B. Appl. Surf. Sci., 2014, 288:524-529.

    10. [10]

      ENSAFI A A, ZANDI-ATASHBAR N, REZAEI B, GHIACI M, CHERMAHINI M E, MOSHIRI P. RSC Adv., 2016, 6(65):60926-60932.ENSAFI A A, ZANDI-ATASHBAR N, REZAEI B, GHIACI M, CHERMAHINI M E, MOSHIRI P. RSC Adv., 2016, 6(65):60926-60932.

    11. [11]

      SHU H H, CHANG G, SU J, CAO L L, HUANG Q W, ZHANG Y T, XIA T T, HE Y B. Sens. Actuators, B, 2015, 220:331-339.SHU H H, CHANG G, SU J, CAO L L, HUANG Q W, ZHANG Y T, XIA T T, HE Y B. Sens. Actuators, B, 2015, 220:331-339.

    12. [12]

      NIU X, LAN M, ZHAO H, CHEN C. Anal. Chem., 2013, 85(7):3561-3569.NIU X, LAN M, ZHAO H, CHEN C. Anal. Chem., 2013, 85(7):3561-3569.

    13. [13]

      JIA H M, CHANG G, LEI M, HE H P, LIU X, SHU H H, XIA T T, SU J, HE Y B. Appl. Surf. Sci., 2016, 384:58-64.JIA H M, CHANG G, LEI M, HE H P, LIU X, SHU H H, XIA T T, SU J, HE Y B. Appl. Surf. Sci., 2016, 384:58-64.

    14. [14]

      YE J H, DENG D M, WANG Y Q, LUO L Q, QIAN K P, CAO S M, FENG X. Sens. Actuators, B, 2020, 305:127473.YE J H, DENG D M, WANG Y Q, LUO L Q, QIAN K P, CAO S M, FENG X. Sens. Actuators, B, 2020, 305:127473.

    15. [15]

      ZHU T X, WANG X E, CHANG W W, ZHANG Y F, MARUYAMA T, LUO L Q, ZHAO X L. Mater. Sci. Eng., C, 2021, 120:111757.ZHU T X, WANG X E, CHANG W W, ZHANG Y F, MARUYAMA T, LUO L Q, ZHAO X L. Mater. Sci. Eng., C, 2021, 120:111757.

    16. [16]

      MOYER J, WILSON D, FINKELSHTEIN I, WONG B, POTTS R. Diabetes Technol. Ther., 2012, 14(5):398-402.MOYER J, WILSON D, FINKELSHTEIN I, WONG B, POTTS R. Diabetes Technol. Ther., 2012, 14(5):398-402.

    17. [17]

      LIPANI L, DUPONT B G R, DOUNGMENE F, MARKEN F, TYRRELL R H, GUY R N, ILIE A. Nat. Nanotechnol., 2018, 13(6):504-511.LIPANI L, DUPONT B G R, DOUNGMENE F, MARKEN F, TYRRELL R H, GUY R N, ILIE A. Nat. Nanotechnol., 2018, 13(6):504-511.

    18. [18]

      NANTAPHOL S, WATANABE T, NOMURA N, SIANGPROH W, CHAILAPAKUL O, EINAGA Y. Biosens. Bioelectron., 2017, 98:76-82.NANTAPHOL S, WATANABE T, NOMURA N, SIANGPROH W, CHAILAPAKUL O, EINAGA Y. Biosens. Bioelectron., 2017, 98:76-82.

    19. [19]

      GARCÍA-MORALES N G, GARCÍA-CERDA L A, PUENTE-URBINA B A, BLANCO-JEREZ L M, ANTAÑO-LÓPEZ R, CASTAÑEDA-ZALDIVAR F. J. Nanomater., 2015, 2015:205314.GARCÍA-MORALES N G, GARCÍA-CERDA L A, PUENTE-URBINA B A, BLANCO-JEREZ L M, ANTAÑO-LÓPEZ R, CASTAÑEDA-ZALDIVAR F. J. Nanomater., 2015, 2015:205314.

    20. [20]

      ARVINTE A, CRUDU I A, DOROFTEI F, TIMPU D, PINTEALA M. J. Electroanal. Chem., 2018, 829:184-193.ARVINTE A, CRUDU I A, DOROFTEI F, TIMPU D, PINTEALA M. J. Electroanal. Chem., 2018, 829:184-193.

    21. [21]

      CHEN L, LONG K, YU X, LI W, GENG B. Chem. -Eur. J., 2013, 19(35):11753-11758.CHEN L, LONG K, YU X, LI W, GENG B. Chem. -Eur. J., 2013, 19(35):11753-11758.

    22. [22]

      HUNYADI S E, MURPHY C J. J. Mater. Chem., 2006, 16(40):3929-3935.HUNYADI S E, MURPHY C J. J. Mater. Chem., 2006, 16(40):3929-3935.

    23. [23]

      WU P, GAO Y, ZHANG H, CAI C. Anal. Chem., 2012, 84(18):7692-7699.WU P, GAO Y, ZHANG H, CAI C. Anal. Chem., 2012, 84(18):7692-7699.

    24. [24]

      COSTA J C, CORIO P, ROSSI L M. Nanoscale, 2015, 7(18):8536-8543.COSTA J C, CORIO P, ROSSI L M. Nanoscale, 2015, 7(18):8536-8543.

    25. [25]

      YANG P H, GAO X, WANG L S, WU Q, CHEN Z C, LIN X F. Microchim. Acta, 2013, 181(1-2):231-238.YANG P H, GAO X, WANG L S, WU Q, CHEN Z C, LIN X F. Microchim. Acta, 2013, 181(1-2):231-238.

    26. [26]

      LI B, YE S, STEWART I E, ALVAREZ S, WILEY B J. Nano Lett., 2015, 15(10):6722-6726.LI B, YE S, STEWART I E, ALVAREZ S, WILEY B J. Nano Lett., 2015, 15(10):6722-6726.

    27. [27]

      SUN Y G, XIA Y N. J. Am. Chem. Soc., 2004, 126(12):3892-3901.SUN Y G, XIA Y N. J. Am. Chem. Soc., 2004, 126(12):3892-3901.

    28. [28]

      DA SILVA R R, YANG M, CHOI S I, CHI M, LUO M, ZHANG C, LI Z Y, CAMARGO P H, RIBEIRO S J, XIA Y N. ACS Nano, 2016, 10(8):7892-7900.DA SILVA R R, YANG M, CHOI S I, CHI M, LUO M, ZHANG C, LI Z Y, CAMARGO P H, RIBEIRO S J, XIA Y N. ACS Nano, 2016, 10(8):7892-7900.

    29. [29]

      JACKSON J B, WESTCOTT S L, HIRSCH L R, WEST J L, HALAS N J. Appl. Phys. Lett., 2003, 82(2):257-259.JACKSON J B, WESTCOTT S L, HIRSCH L R, WEST J L, HALAS N J. Appl. Phys. Lett., 2003, 82(2):257-259.

    30. [30]

      SHIN K S, KIM J H, KIM I H, KIM K. J. Nanopart. Res., 2012, 14(3):735.SHIN K S, KIM J H, KIM I H, KIM K. J. Nanopart. Res., 2012, 14(3):735.

    31. [31]

      ALQUDAMI A, ANNAPOORNI S, GOVIND, SHIVAPRASAD S M. J. Nanopart Res., 2008, 10(6):1027-1036.ALQUDAMI A, ANNAPOORNI S, GOVIND, SHIVAPRASAD S M. J. Nanopart Res., 2008, 10(6):1027-1036.

    32. [32]

      SHI Q F, DIAO G W, MU S L. Electrochim. Acta, 2014, 133:335-346.SHI Q F, DIAO G W, MU S L. Electrochim. Acta, 2014, 133:335-346.

    33. [33]

      LEE H, SONG C, SEOK Y, HONG Y S, MIN S K, CHO H R. Sci. Adv., 2017, 3(3):1601314.LEE H, SONG C, SEOK Y, HONG Y S, MIN S K, CHO H R. Sci. Adv., 2017, 3(3):1601314.

    34. [34]

      YU H L, HE Y. Sen. Actuators, B, 2015, 209:877-882.YU H L, HE Y. Sen. Actuators, B, 2015, 209:877-882.

    35. [35]

      CHEN X L, PAN H B, LIU H F, DU M. Electrochim. Acta, 2010, 56(2):636-643.CHEN X L, PAN H B, LIU H F, DU M. Electrochim. Acta, 2010, 56(2):636-643.

    36. [36]

      MAYORGA-MARTINEZ C C, GUIX M, MADRID R E, MERKOCI A. Chem. Commun., 2012, 48(11):1686-1688.MAYORGA-MARTINEZ C C, GUIX M, MADRID R E, MERKOCI A. Chem. Commun., 2012, 48(11):1686-1688.

    37. [37]

      YUAN M, LIU A P, ZHAO M, DONG W J, ZHAO T Y, WANG J J, TANG W H. Sens. Actuators, B, 2014, 190:707-714.YUAN M, LIU A P, ZHAO M, DONG W J, ZHAO T Y, WANG J J, TANG W H. Sens. Actuators, B, 2014, 190:707-714.

    38. [38]

      SAVK A, CELLAT K, ARIKAN K, TEZCAN F, GULBAY S K, KIZILDAG S, ISGIN E S, SEN F. Sci. Rep., 2019, 9:19228.SAVK A, CELLAT K, ARIKAN K, TEZCAN F, GULBAY S K, KIZILDAG S, ISGIN E S, SEN F. Sci. Rep., 2019, 9:19228.

    39. [39]

      BO X J, BAI J, YANG L, GUO L P. Sens. Actuators, B, 2011, 157(2):662-668.BO X J, BAI J, YANG L, GUO L P. Sens. Actuators, B, 2011, 157(2):662-668.

    40. [40]

      LIN K C, YANG C Y, CHEN S M. Int. J. Electrochem. Sci., 2015, 10(5):3726-3737.LIN K C, YANG C Y, CHEN S M. Int. J. Electrochem. Sci., 2015, 10(5):3726-3737.

    41. [41]

      CAO X, WANG N, JIA S, SHAO Y. Anal. Chem., 2013, 85(10):5040-5046.CAO X, WANG N, JIA S, SHAO Y. Anal. Chem., 2013, 85(10):5040-5046.

    42. [42]

      MENG Wei-Chen, WANG Qing-Xiang, LI Yan-Zhao, FENG Ling-Zhu, LANG Ming-Fei, CHEN Hong-Shen, SUN Jing. Chin. J. Anal. Chem., 2020, 48(3):363-370. 孟维琛, 王清翔, 李彦钊, 冯凌竹, 郎明非, 陈宏甡, 孙晶. 分析化学, 2020, 48(3):363-370.

  • 加载中
计量
  • PDF下载量:  10
  • 文章访问数:  755
  • HTML全文浏览量:  140
文章相关
  • 收稿日期:  2021-07-01
  • 修回日期:  2021-08-03
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章