Citation: PENG Can-Wei,  WANG Li,  CHEN Shou-Hui. Two-dimensional Lamellar Porphyrin-based Covalent-Organic Framework Modified Electrode for Highly Sensitive Detection of Mercury Ions in Sewage[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(3): 356-364. doi: 10.19756/j.issn.0253-3820.210582 shu

Two-dimensional Lamellar Porphyrin-based Covalent-Organic Framework Modified Electrode for Highly Sensitive Detection of Mercury Ions in Sewage

  • Corresponding author: CHEN Shou-Hui, csh2k@jxnu.edu.cn
  • Received Date: 23 June 2021
    Revised Date: 29 October 2021

    Fund Project: Supported by the National Natural Science Foundation of China (Nos.21765009, 21964010, 21465014, 21665012) and the Postgraduate Innovation Fund Project of Jiangxi Provincial Department of Education.

  • A two-dimensional porphyrin-based covalent-organic framework (TAPP-TPAL-COF) was prepared by the amine-aldehyde condensation reaction of terephthalaldehyde (TPAL) and 5,10,15,20-tetrakis (4-aminobenzene) porphyrin (TAPP). TAPP-TPAL-COF was porous two-dimensional nanosheets with quadrilateral topological structure and planar conjugated π bonds. The material had π-π conjugate interaction with the glassy carbon electrode, making the material stably immobilized on the surface of the electrode. The porous structure of TAPP-TPAL-COF was conducive to the transmission of mercury ions (Hg2+), and the four N atoms in the porphyrin ring served as Hg2+ coordination sites to enrich Hg2+ in the solution on the electrode surface, improving the sensitivity of the sensor. An Hg2+ electrochemical sensor was thus constructed via TAPP-TPAL-COF. The linear range of the sensor was 10.9 nmol/L-17.5 μmol/L, the limit of detection was 3.3 nmol/L (S/N=3), and the sensitivity was 111.5 μA·L/(μmol·cm2). It took only 250 s to get the current response signals. The sensor presented good stability, high sensitivity, wide linear range, low detection limit and fast response, providing an optional solution for real-time detection of heavy metal ions in water samples.
  • 加载中
    1. [1]

      BANSOD B K, KUMAR T, THAKUR R, RANA S, SINGH I. Biosens. Bioelectron., 2017, 94:443-455.

    2. [2]

      DOLCI L S, MARZOCCHI E, MONTALTI M, PRODI L, MONTI D, NATALE C D, AMICO A D, PAOLESSE R. Biosens. Bioelectron., 2006, 22(3):399-404.

    3. [3]

      LI M, WANG B, YANG M Q, LI Q H, CALATAYUD D G, ZHANG S H, WANG H Y, WANG L D, MAO B Y. Sep. Purif. Technol., 2020, 239:116515.

    4. [4]

      ZHANG X, XIAO Y, QIAN X. Angew. Chem., Int. Ed., 2008, 47(42):8025-8029.

    5. [5]

      LIU C B, CHEN X Y, ZONG B Y, MAO S. J. Mater. Chem. A, 2019, 7(12):6616-6630.

    6. [6]

      DING S Y, WANG W. Chem. Soc. Rev., 2013, 42(2):548-568.

    7. [7]

      HUANG N, WANG P, JIANG D. Nat. Rev. Mater., 2016, 1(10):16068.

    8. [8]

      URIBE-ROMO F J, HUNT J R, FURUKAWA H, KLOCK C, O'KEEFFE M, YAGHI O M. J. Am. Chem. Soc., 2009, 131(13):4570-4571.

    9. [9]

      XU F, JIN S B, ZHONG H, WU D C, YANG X Q, CHEN X, WEI H, FU R W, JIANG D L. Sci. Rep., 2015, 5:8225-8231.

    10. [10]

      KILIAN K, PYRZYNSKA K. Talanta, 2003, 60(4):669-678.

    11. [11]

      MOURA N M M, NUNEZ C, SANTOS S M, FAUSTINO M A F, CAVALEIRO J A S, NEVES M G P M S, CAPELO J L, LODEIRO C. Inorg. Chem., 2014, 53(12):6149-6158.

    12. [12]

      YANG R H, LI K A, WANG K M, LIU F, LI N, ZHAO F L. Anal. Chim. Acta, 2002, 469:285-293.

    13. [13]

      MODAK A, NANDI M, MONDAL J, BHAUMIK A. Chem. Commun., 2012, 48(2):248-250.

    14. [14]

      SHINDE D B, KANDAMBETH S, PACHFULE P, KUMAR R R, BANERJEE R. Chem. Commun., 2015, 51(2):310-313.

    15. [15]

      XIE Y, XU M L, WANG L, WANG L Y, SONG Y H. Mater. Sci. Eng., C, 2020, 112:110864.

    16. [16]

      RABBANI M G, SEKIZKARDES A K, KAHVECI Z, REICH T E, DING R, EL-KADERI H M. Chem.- Eur. J., 2013, 19(10):3324-3328.

    17. [17]

      GOMES R, BHAUMIK A. RSC Adv., 2016, 6(33):28047-28054.

    18. [18]

      FENG S, XU H, ZHANG C, CHEN Y, JIANG J X. Chem. Commun., 2017, 53(82):11334-11337.

    19. [19]

      WAN S, GÁNDARA F, ASANO A, FURUKAWA H, SAEKI A, DEY S K, LIAO L, AMBROGIO M W, BOTROS Y Y, DUAN X. Chem. Mater., 2011, 23(18):4094-4097.

    20. [20]

      ZHOU T Y, XU S Q, WEN Q, PANG Z F, ZHAO X. J. Am. Chem. Soc., 2014, 136(45):15885-15888.

    21. [21]

      LI T, ZHANG W D, LIU Y, LI Y, CHENG C, ZHU H, YAN X, LI Z, GU Z G. J. Mater. Chem. A, 2019,7(34):19676-19681.

    22. [22]

      LAVIRON E. J. Electroanal. Chem., 1979, 101(1):19-28.

    23. [23]

      XING H K, XU J, ZHU X, DUAN X, LU L, WANG W, ZHANG Y, YANG T. J. Electroanal. Chem., 2016, 760:52-58.

    24. [24]

      BI C C, KE X X, CHEN X, WEERASOORIYA R, HONG Z Y, WANG L C, WU Y C. Anal. Chim. Acta, 2020, 1100:31-39.

    25. [25]

      LIU Z, PUUMALA E, CHEN A. Sens. Actuators, B, 2019, 287:517-525.

    26. [26]

      SAKTHINATHAN S, TAMIZHDURAI P, ARUMUGAM R, CHIU T W, YANG K. Microporous Mesoporous Mater., 2020, 292:109770.

    27. [27]

      ZHAO Z Q, CHEN X, YANG Q, LIU J H, HUANG X J. Chem. Commun., 2012, 48(16):2180-2182.

    28. [28]

      LIU L, ZHUO K, YUAN Z Y, ZHANG Q, ZHANG W D, SANG S B. Int. J. Electrochem. Sci., 2019, 14:5317-5330.

  • 加载中
    1. [1]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    2. [2]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    3. [3]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    4. [4]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    5. [5]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    6. [6]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    7. [7]

      Shuhui Li Xucen Wang Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059

    8. [8]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    9. [9]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    10. [10]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    11. [11]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    12. [12]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    13. [13]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    14. [14]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    15. [15]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    16. [16]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    17. [17]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    18. [18]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    19. [19]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    20. [20]

      Yuan Zheng Quan Lan Zhenggen Zha Lingling Li Jun Jiang Pingping Zhu . Teaching Reform of Organic Synthesis Experiments by Introducing Reverse Thinking and Design Concepts: Taking the Synthesis of Cinnamic Acid Based on Retrosynthetic Analysis as an Example. University Chemistry, 2024, 39(6): 207-213. doi: 10.3866/PKU.DXHX202310065

Metrics
  • PDF Downloads(11)
  • Abstract views(1029)
  • HTML views(306)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return