Citation: GAO Jia-Qi,  LIN Zi-Han,  JIANG You,  XU He-Yi,  DAI Xin-Hua,  HUANG Ze-Jian,  FANG Xiang. Research Progress of Underwater Mass Spectrometry In Situ Analysis Technology[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(5): 666-679. doi: 10.19756/j.issn.0253-3820.210570 shu

Research Progress of Underwater Mass Spectrometry In Situ Analysis Technology

  • Corresponding author: HUANG Ze-Jian,  FANG Xiang, 
  • Received Date: 17 June 2021
    Revised Date: 18 February 2022

    Fund Project: Supported by the Key Deployment Project of Center for Ocean Mega-science, Chinese Academy of Sciences (No.COMS2020J10) and the National Key Research and Development Plan of China (Nos.2016YFF0102603, 2017YFF0206204).

  • The deep-sea material circulation process has a great impact on human life. The establishment of fast, accurate and sensitive deep-sea in situ detection technology has important application value for detecting resources and protecting the environment. Mass spectrometry has the characteristics of fast detection speed, high sensitivity, and qualitative and quantitative detection of unknown substances. It can well capture the dynamic changes of chemical substances in the ocean and is very suitable for in-situ analysis of deep seas. This article reviewed recent researches on underwater mass spectrometry in situ analysis technology, summarized the development status and difficulties of the technology, and described the structural characteristics and limitations of the existing underwater mass spectrometry in situ analysis system. The future application prospects of the technology were also briefly described.
  • 加载中
    1. [1]

      MARTIN W, BAROSS J, KELLEY D, RUSSELL M. J. Nat. Rev. Microbiol., 2008, 6(11):805-814.

    2. [2]

      BAROSS J A, HOFFMAN S E. Origins Life Evol. Biospheres, 1985, 15(4):327-345.

    3. [3]

      MOORE T S, MULLAUGH K M, HOLYOKE R R, MADISON A S, YUCEL M, LUTHER G W. Annu. Rev. Mar. Sci., 2009, 1(1):91-115.

    4. [4]

      BOULART C, PRIEN R, CHAVAGNAC V, DUTASTA J P. Environ. Sci. Technol., 2013, 47(15):8582-8590.

    5. [5]

      WANKEL S D, GERMANOVICH L N, LILLEY M D, GENC G, DIPERNA C J, BRADLEY A S, OLSON E J, GIRGUIS P R. Nat. Geosci., 2011, 4(7):461-468.

    6. [6]

      KATO N, CHOYEKH M, DEWANTARA R, SENGA H, CHIBA H, KOBAYASHI E, YOSHIE M, TANAKA T, SHORT T. J. Loss Prev. Process Ind., 2017, 50:386-396.

    7. [7]

      WANKEL S D, JOYE S B, SAMARKIN V A, SHAH S R, FRIEDERICH G, MELAS-KYRIAZI J, GIRGUIS P R. Deep Sea Res., Part II, 2010, 57(21-23):2022-2029.

    8. [8]

      GENTZA T, DAMM E, JENS S, MAU S, MCGINNIS D F, SCHLUTER M. Cont. Shelf Res., 2014, 72:107-118.

    9. [9]

      STOW D, MAYALL M. Mar. Pet. Geol., 2000, 17(2):125-135.

    10. [10]

      MILLS G, FONES G. Sensor Rev., 2012, 32(1):17-28.

    11. [11]

      CAMILLI R, HEMOND H F. TrAC-Trends Anal. Chem., 2004, 23(4):307-313.

    12. [12]

      FUKUBA T, FUJII T. Lab Chip, 2021, 21(1):55-74.

    13. [13]

      JOHNSON K S, COALE K H, JANNASCH H W. Anal. Chem., 1992, 64(22):1065-1075.

    14. [14]

      HEMOND H, CAMILLI R. TrAC-Trends Anal. Chem., 2002, 21(8):526-533.

    15. [15]

      PRIEN R D. Mar. Chem., 2007, 107(3):422-432.

    16. [16]

      YOSHIDA H, HYAKUDOME T, ISHIBASHI S, SAWA T, TSUKIOKA S, AOKI T, TANI T, IWATA M, MORIGA T. ECS Trans., 2010, 26(1):67-76.

    17. [17]

      ERIKSEN C C, OSSE T J, LIGHT R D, WEN T, LEHMAN T W, SABIN P L, BALLARD J W, CHIODI A M. IEEE J. Oceanic Eng., 2001, 26(4):424-436.

    18. [18]

      MCPHAIL S. J. BionicEng., 2009, 6(1):55-62.

    19. [19]

      CHUA E J, SAVIDGE W, SHORT R T, CARDENAS-VALENCIA A M, FULWEILER R W. Front. Mar. Sci., 2016, 3:1-24.

    20. [20]

      BELL R J, SAVIDGE W B, TOLER S K, BYRNE R H, SHORT R T. Limnol. Oceanogr.:Methods, 2012, 10(3):117-128.

    21. [21]

      ATKINSON M J, THOMAS F I M, LARSON N, TERRILL E, MORITA K, LIU C C. Deep Sea Res., Part I, 1995, 42(5):761-771.

    22. [22]

      SCHROEDER C R, NEURAUTER G, KLIMANT I. Microchim. Acta, 2007, 158(3-4):205-218.

    23. [23]

      JOHNSON J E. Anal. Chim. Acta, 1999, 395(1-2):119-132.

    24. [24]

      KRAFT M, JAKUSCH M, KARLOWATZ M, KATZIR A, MIZAIKOFF B. Appl. Spectrosc., 2003, 57(6):591-599.

    25. [25]

      LE BRIS N, SARRADIN P M, BIROT D, ALAYSE-DANET A M. Mar. Chem., 2000, 72(1):1-15.

    26. [26]

      BUTMAN B, MARTINI M, MICKELSON M J. J. Atmos. Ocean. Technol., 2007, 24(11):1924-1935.

    27. [27]

      ZHAO P, CAI W. Anal. Chem., 1997, 69(24):5052-5058.

    28. [28]

      BATTAGLIA T M, DUNN E E, LILLEY M D, HOLLOWAY J, DABLE B K, MARQUARDT B J, BOOKSH K S. Analyst, 2004, 129(7):602-606.

    29. [29]

      BREWER P G, MALBY G, PASTERIS J D, WHITE S N, PELTZER E T, WOPENKA B, FREEMAN J, BROWN M O. Deep Sea Res., Part I, 2004, 51(5):739-753.

    30. [30]

      BOULART C, PRIEN R, CHAVAGNAC V, DUTASTA J P. Environ. Sci. Technol., 2013, 47(15):8582-8590.

    31. [31]

      DULLO F T, LINDECRANTZ S, JANA J, JORN H H, ENGQVIST M, STIAN A S, OLAV G H, Opt. Express, 2015.

    32. [32]

      GRILLI R, TRIEST J, CHAPPELLAZ J, CALZAS M, DESBOIS T, JANSSON P, GUILLERM C, FERRE B, LECHEVALLIER L, LEDOUX V, ROMANINI D. Environ. Sci. Technol, 2018, 52(18):10543-10551.

    33. [33]

      MICHEL A P M, WANKEL S D, KAPIT J, SANDWITH Z, GIRGUIS P R. Deep Sea Res., Part I, 2018, 150:57-66.

    34. [34]

      GOUEGUEL C L, BHATT C R, JAIN J C, LOPANO C L, MCINTYRE D L. Opt. Laser Technol., 2018, 108:53-58.

    35. [35]

      VELOSO-ALARCON M E, JANSSON P, DE B M, MINSHULL T A, WESTBROOK G K, PALIKE H, BUNZ S, WRIGHT I, GREINERT J. Geophys. Res. Lett., 2019, 46(15):9072-9081.

    36. [36]

      CAMILLI R, DURYEA A. Proc. MTS/IEEE Oceans 2007, 1-5:1968-1973.

    37. [37]

      BELL R J, SHORT R T, VAN AMEROM F H W, BYRNE R H. Environ. Sci. Technol., 2007, 41(23):8123-8128.

    38. [38]

      KIBELKA G P, SHORT R T, TOLER S K, EDKINS J E, BYRNE R H. Talanta, 2004, 64(4):961-969.

    39. [39]

      HEMOND H F, MUELLER A V, HEMOND M. J. Am. Soc. Mass Spectrom., 2008, 19(10):1403-1410.

    40. [40]

      CAMILLI R, NOMIKOU P, ESCARTIN J, RIDAO P, MALLIOS A, KILIAS S P, ARGYRAKI A. Sci. Rep., 2015, 5:12152.

    41. [41]

      SCHLUTER M, GENTZ T. J. Am. Soc. Mass Spectrom., 2008, 19(10):1395-1402.

    42. [42]

      GEREIT F, HAUPTMANN P, MATZ G, MELLERT V, REUTER R. Oceanol. Int., 1998:55-69.

    43. [43]

      WENNER P G, BELL R J, AMEROM F, TOLER S K, EDKINS J E, HALL M L, KOEHN K, SHORT R T, BYRNE R H. TrAC-Trends Anal. Chem., 2004, 23(4):288-295.

    44. [44]

      HOCH G, KOK B. Arch. Biochem. Biophys., 1963, 101(1):160-170.

    45. [45]

      BURLACOT A, LI-BEISSON Y, PELTIER G. Plant Physiol., 2020, 183(2):451-454.

    46. [46]

      GEHM C, STREIBEL T, EHLERT S, SCHULZ-BULL D, ZIMMERMANN R. Anal. Chem., 2019, 91(24):15547-15554.

    47. [47]

      KAISER J, REUER M K, BARNETT B, BENDER M L. Geophys. Res. Lett., 2005, 32(19):1-5.

    48. [48]

      TORTELL P D. Limnol. Oceanogr.:Methods, 2005, 3:24-37.

    49. [49]

      XIAO K, WU J, LI H, HONG Y, WILSON A M, JIAO J J, SHANANAN M. Sci. Total Environ., 2018, 635:586-597.

    50. [50]

      RITZ S, DAHNKE K, FISCHER H. Aquat. Sci., 2018, 80(1):1-13.

    51. [51]

      JOHNSON R C, COOKS R G, ALLEN T M, CISPER M E, HEMBERGER P H. Mass Spectrom. Rev., 2000, 19(1):1-37.

    52. [52]

      CHENG Y, LIU M, ZHAO B, YANG L, GUO C, ZHANG L. Talanta, 2021, 221:121464.

    53. [53]

      THOMPSON A J, CREBA A S, FERGUSON R M, KROGH E T, GILL C G. Rapid Commun. Mass Spectrom., 2006, 20(13):2000-2008.

    54. [54]

      LAPACK M A, TOU J C, ENKE C G. Anal. Chem., 1990, 62(13):1265-1271.

    55. [55]

      MIRANDA L D, BYRNE R H, SHORT R T, BELL R J. Talanta, 2013, 116:217-222.

    56. [56]

      OH K S, KOO Y M, JUNG K W. Int. J. Mass Spectrom., 2006, 253(1-2):65-70.

    57. [57]

      QUIROGA R Q, GARCIA H. Clin. Neurophysiol., 2003, 114(2):376-390.

    58. [58]

      SHORT R T, FRIES D P, TOLER S K, LEMBKE C E, BYRNE R H. Meas. Sci. Technol., 1999, 10(12):1195-1201.

    59. [59]

      BODDEKER K W, BENGTSON G, BODE E. J. Membr. Sci., 1990, 53(1-2):143-158.

    60. [60]

      BODDEKER K W, BENGTSON G, PINGEL H. J. Membr. Sci., 1990, 54(1-2):1-12.

    61. [61]

      BODDEKER K W, BENGTSON G, PINGEL H, DOZEL S. Desalination, 1993, 90(1-3):249-257.

    62. [62]

      PENG M, VANE L M, LIU S X. J. Hazard. Mater., 2003, 98(1-3):69-90.

    63. [63]

      PENG P, SHI B, LAN Y. Sep. Sci. Technol., 2010, 46(2):234-246.

    64. [64]

      SUKITPANEENIT P, CHUNG T. J. Membr. Sci., 2011, 374(1-2):67-82.

    65. [65]

      VANE L M. J. Chem. Technol. Biot., 2005, 80(6):603-629.

    66. [66]

      MIRANDA L D, BELL R J, SHORT R T, VAN AMEROM F H W, BYRNE R H. J. Membr. Sci., 2011, 385(1-2):49-56.

    67. [67]

      PINNAU I, TOY L G. J. Membr. Sci., 1996, 109(1):125-133.

    68. [68]

      BLUME I, BAKER R W. J. Membr. Sci., 1990, 49(3):253-286.

    69. [69]

      ADYMKANOV S V, YAMPOL'SKII Y P, POLYAKOV A M, BUDD P M, REYNOLDS K J, MCKEOWN N B, MSAYIB. Polym. Sci., Ser. A, 2008, 50(4):444-450.

    70. [70]

      STONE M L, GRESHAM G L, POLSON L A. Anal. Chim. Acta, 2000, 407(1):311-317.

    71. [71]

      UPTON K T, SCHILLING K A, BEAUCHAMP J L. Anal. Methods, 2017, 9(34):5065-5074.

    72. [72]

      HAYEN H, KARST U. J. Chromatogr. A, 2003, 1000(1-2):549-565.

    73. [73]

      CARROLL D I, DZIDIC I, HORNING E C, STILLWELL R N. Appl. Spectrosc. Rev., 1990, 17(3):337-406.

    74. [74]

      KEBARLE P. J. Mass Spectrom., 2015, 35(7):804-817.

    75. [75]

      GARDEN R W, SWEEDLER J V. Anal. Chem., 2000, 72(1):30-36.

    76. [76]

      CAMILLI R, REDDY C M, YOERGER D R, VAN MOOY B A S, JAKUBA M V, KINSEY J C, MCINTYRE C P, SYLVA S P, MALONEY J V. Science, 2010, 330(6001):201-204.

    77. [77]

      MIELCZAREK P, SILBERRING J, SMOLUCH M. Mass Spectrom. Rev., 2019, 39(5-6):453-470.

    78. [78]

      BURGOYNE T W, HIEFTJE G M, HITES R A. J. Am. Soc. Mass Spectrom., 1997, 8(4):307-318.

    79. [79]

      DIAZ J A, GIESE C F, GENTRY W R. J. Am. Soc. Mass Spectrom., 2001, 12(6):619.

    80. [80]

      SINHA M P, NEIDHOLDT E L, HUROWITZ J, STURHAHN W, BEARD B, HECHT M H. Rev. Sci. Instrum., 2011, 82(9):263.

    81. [81]

      SNYDER D T, PULLIAM C J, OUYANG Z, COOKS R G. Anal. Chem., 2015, 88(1):2-29.

    82. [82]

      GETTY S A, BRINCKERHOFF W B, CORNISH T, ECELBERGER S, FLOYD M. Rapid Commun. Mass Spectrom., 2012, 26(23):2786-2790.

    83. [83]

      GETTY S A, BRINCKERHOFF W B, LI X, ELSILA J, CORNISH T, ECELBERGER S, WU Q, ZARE R. IEEE Aerosp., 2014:1-6.

    84. [84]

      RIEDO A, MEYER S, HEREDIA B, NEULAND M B, BIELER A, TULEJ M, LEYA I, IAKOVLEVA M, MEZGER K, WURZ P. Planet. Space Sci., 2013, 87:1-13.

    85. [85]

      JOHNSON J, LEE K, BHANOT J, MCLUCKEY S. J. Am. Soc. Mass Spectrom., 2019, 30(4):588-594.

    86. [86]

      GENTZ T, SCHLUTER M. Limnol. Oceanogr.:Methods, 2012, 10(5):317-328.

    87. [87]

      SHORT R T, FRIES D P, KERR M L, LEMBKE C E, TOLER S K, WENNER P G, BYRNE R H. J. Am. Soc. Mass Spectrom., 2001, 12(6):676-682.

    88. [88]

      HEMOND H F. Rev. Sci. Instrum., 1991, 62(6):1420-1425.

    89. [89]

      HARTNETT H E, SEITZINGER S P. Mar. Chem., 2003, 83(1-2):23-30.

    90. [90]

      MCMURTRY G M, LEE J S, KOLOTYRKINA I Y, KIM K H. IEEE OCEANS, 2012-YEOSU, 2012:1-6.

    91. [91]

      CHOYEKH M, KATON, SHORT T, UKITA M, YAMAGUCHI Y, SENGA H, YOSHIE M, TANAKA T, KOBAYASHI E, CHIBA H. Mar. Technol. Soc. J., 2015, 49(3):88-101.

    92. [92]

      KANA T M, SULLIVAN M B, CORNWELL J C, GROSZKOWSKI K M. Limnol. Oceanogr., 1998, 43(2):334-339.

    93. [93]

      LLOYD D. FEMS Microbiol. Lett., 1986, 38(1):11-17.

    94. [94]

      TSAMBA L, CORREC O, LE CLOIREC P, CIMETIERE N. Rapid Commun. Mass Spectrom., 2019, 33(7):710-718.

    95. [95]

      KIM I, HAHM D, PARK K, LEE Y, CHOI J O, ZHANG M, CHEN L, KIM H C, LEE S. Sci. Total Environ., 2017, 584-585:154-163.

    96. [96]

      CHATTON E, LABASQUE T, DE LA BERNARDIE J, GUIHENEUF N, BOUR O, AQUILINA L. Environ. Sci. Technol., 2017, 51(2):846-854.

    97. [97]

      BRKIC B, GIANNOUKOS S, TAYLOR S, LEE D F. Anal. Methods, 2018, 10(48):5827-5833.

    98. [98]

      VISSER A, SINGLETON M J, HILLEGONDS D J, VELSKO C A, MORAN J E, ESSER B K. Rapid Commun. Mass Spectrom., 2013, 27(21):2472-2482.

    99. [99]

      MCMUTRTRY G M, WILTSHIRE J C, BOSSUYT A. IEEE Oceans 2005 Europe, 2005, 1-2:395-400.

    100. [100]

      GENTZ T, DAMM E, JENS S V D, MAU S, MCGINNIS D F, SCHLUTER M. Cont. Shelf Res., 2014, 72:107-118.

    101. [101]

      MCMURTRY G, KOLOTYRKINA I, BRUCKER G, RATHBONE J. MTS/IEEE Oceans, 2011:1-4.

    102. [102]

      PORCELLI T, SIVIERO F, BONGIORNO G A, MICHELATO P, PAGANI C. Vacuum, 2016, 123:23-28.

    103. [103]

      SHORT R, TOLER S, KIBELKA G, RUEDAROA D, BELL R, BYRNE R. TrAC-Trends Anal. Chem., 2006, 25(7):637-646.

    104. [104]

      CAMILLI R, DURYEA A N. Environ. Sci. Technol., 2009, 43(13):5014-5021.

    105. [105]

      CREASER C S, LAMARCA D G, DOS S L M, NEW A P, JAMES P A. Analyst, 2003, 128(9):1150-1156.

    106. [106]

      JANFELT C, GRAESBOLL R, LAURITSEN F R. Int. J. Mass Spectrom., 2008, 276(1):17-23.

    107. [107]

      BELL R J, SHORT R T, BYRNE R H. Limnol. Oceanogr.:Methods, 2011, 9(4):164-175.

    108. [108]

      FUJITA H. Fortschr. Hochpolym.-Forsch., 1961, 3(1):1-47.

    109. [109]

      KLOPFFER M H, FLACONNECHE B. Oil Gas Sci. Technol., 2006, 56(3):223-244.

    110. [110]

      LIPNIZKI F, TRAGARDH G. Sep. Purif. Rev., 2001, 30(1):49-125.

    111. [111]

      HAMME R, EMERSON S. Deep Sea Res., Part I, 2004, 51(11):1517-1528.

    112. [112]

    113. [113]

      LI X, XIA L, YAN X. Biol. Fert. Soils, 2014, 50(6):891-900.

    114. [114]

      SHI W, LU X, ZHANG J, ZHAO J, YANG L, YU Q, WANG X. Polymers, 2019, 11(3):567.

    115. [115]

      WU C, LIU W, JIANG J, WANG Y, HOU K, LI H. Talanta, 2019, 192:46-51.

  • 加载中
    1. [1]

      Shunliu Deng Haifeng Su Yaxian Zhu Yuzhi Wang Yuhua Weng Zhaobin Chen Shunü Peng Yinyun Lü Xinyi Hong Yiru Wang Xiaozhen Huang Zhimin Lin Lansun Zheng . Course Ideological and Political Design for Self-Building Experiments of Scientific Instruments: Taking the Construction, Debugging, and Application of Teaching Mass Spectrometer as an Example. University Chemistry, 2024, 39(2): 127-132. doi: 10.3866/PKU.DXHX202308002

    2. [2]

      Xiaofei Zhou Yu-Qing Cao Feng Zhu Li Qi Linhai Liu Ni Yan Zhiqiang Zhu . Missions and Challenges of Instrumental Analysis Course in the New Era. University Chemistry, 2024, 39(6): 174-180. doi: 10.3866/PKU.DXHX202310058

    3. [3]

      Zhentong Zhu Peiyao Du Chaoqin Zeng Rui Zhou Xiaoyan He Bingzhang Lu Xiaoquan Lu . Discussion on Teaching Methods for Bilingual Courses in Instrumental Analysis for Chemistry Majors. University Chemistry, 2025, 40(10): 39-45. doi: 10.12461/PKU.DXHX202411014

    4. [4]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    5. [5]

      Zhaoyang Li Haiyan Zhao Yali Zhang Yuan Zhang Shiqiang Cui . Integration of Nobel Prize Achievements in Analytical Technology with College Instrumental Analysis Course. University Chemistry, 2025, 40(3): 269-276. doi: 10.12461/PKU.DXHX202405131

    6. [6]

      Liqiang Huang Peng Lin . 数-图分析法解释仪器分析实验课程教学中的难点. University Chemistry, 2025, 40(6): 353-359. doi: 10.12461/PKU.DXHX202407074

    7. [7]

      Yanan Fan Jingjing Huang . Interactive Electronic Courseware Facilitates the Development of Integrated Undergraduate-Graduate Instrumental Analysis Laboratory Courses: A Case Study of UV-Vis Spectroscopy Analysis Experiment. University Chemistry, 2025, 40(10): 282-287. doi: 10.12461/PKU.DXHX202411009

    8. [8]

      Wei Shao Wanqun Zhang Pingping Zhu Wanqun Hu Qiang Zhou Weiwei Li Kaiping Yang Xisheng Wang . Design and Practice of Ideological and Political Cases in the Course of Instrument Analysis Experiment: Taking the GC-MS Experiment as an Example. University Chemistry, 2024, 39(2): 147-154. doi: 10.3866/PKU.DXHX202309048

    9. [9]

      Yifan Xie Liyun Yao Ruolin Yang Yuxing Cai Yujie Jin Ning Li . Application of Comparative Pedagogy in Instrumental Analysis Experiment Teaching. University Chemistry, 2024, 39(3): 266-273. doi: 10.3866/PKU.DXHX202309068

    10. [10]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    11. [11]

      Qiang Xu Rong Zhang Liyan Zhang Jinxuan Liu Shuo Wu Rongwen Lv . Exploration and Practice of Ideological and Political Education Construction in the Course of Practical Instrument Analysis Theory. University Chemistry, 2024, 39(6): 132-136. doi: 10.3866/PKU.DXHX202311018

    12. [12]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Exploration on the Integration Mode of Instrumental Analysis with Science and Education under the Background of Artificial Intelligence Era. University Chemistry, 2024, 39(8): 365-374. doi: 10.12461/PKU.DXHX202403014

    13. [13]

      Linlin Guo Jinjun Zhang Chengpeng Miao Bojing Liu Xiaozhen Fan . Design and Practice of Integrating Ideological and Political Education into Instrumental Analysis Course Based on OBE Concept: Introduction. University Chemistry, 2024, 39(11): 87-95. doi: 10.12461/PKU.DXHX202403001

    14. [14]

      Siming Bian Sijie Luo Junjie Ou . Application of van Deemter Equation in Instrumental Analysis Teaching: A New Type of Core-Shell Stationary Phase. University Chemistry, 2025, 40(3): 381-386. doi: 10.12461/PKU.DXHX202406087

    15. [15]

      Zufeng Qiu Jie Ouyang Yiru Wang Hengting Yang Xin Liao Chi Zhang Xuanyao Jiang Shunliu Deng Zhiwei Lin . 综合运用分析仪器解析“盲盒”样品——未知物的剖析. University Chemistry, 2025, 40(6): 296-302. doi: 10.12461/PKU.DXHX202405167

    16. [16]

      Fang Li Xiang Wu Bing Li Yougui Li . Design and Practice of Course Ideological and Political Education in Modern Instrumental Analysis Based on the OBE Concept. University Chemistry, 2025, 40(7): 26-33. doi: 10.12461/PKU.DXHX202409020

    17. [17]

      Yida Zhang Haixia Zhang . Exploration and Practice of English Teaching in College Chemistry Courses: Taking the Instrumental Analysis Course as an Example. University Chemistry, 2025, 40(7): 79-82. doi: 10.12461/PKU.DXHX202409090

    18. [18]

      Yan Li Fei Ding Jielun Yan Qingyang Zhou Zhe Wang Yifan Shi Jing Wang Anna Tang . Improving Instrumental Analytical Chemistry Laboratory Teaching: Developing a Bilingual Classroom to Cultivate Innovative Talents. University Chemistry, 2025, 40(7): 83-89. doi: 10.12461/PKU.DXHX202409059

    19. [19]

      Qian Wu Yuanxia Lv Zixuan Guo Zhihao Zhao Zhimin Zhang Hongmei Lu . A Case Study and Practice of Research-Oriented Comprehensive Instrumental Analysis Laboratory Courses. University Chemistry, 2025, 40(10): 194-202. doi: 10.12461/PKU.DXHX202411063

    20. [20]

      Zisheng Xiao Siyi Liu Binhong He Yi Xiao Qiong Xu Zhili Lan Rong Tan Liang Tan Dulin Yin . Construction and Practice of Instrumental Analysis Experimental Teaching Mode with Deep Integration of Ideological and Political Education. University Chemistry, 2025, 40(11): 150-159. doi: 10.12461/PKU.DXHX202412113

Metrics
  • PDF Downloads(17)
  • Abstract views(1158)
  • HTML views(238)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return