Ni-CuO/ITO电极对乙醇电催化氧化及检测的研究

曹厚勇 曹猛 毕怡 于乃森 郎明非 孙晶

引用本文: 曹厚勇, 曹猛, 毕怡, 于乃森, 郎明非, 孙晶. Ni-CuO/ITO电极对乙醇电催化氧化及检测的研究[J]. 分析化学, 2021, 49(10): 1722-1732. doi: 10.19756/j.issn.0253-3820.210565 shu
Citation:  CAO Hou-Yong,  CAO Meng,  BI Yi,  YU Nai-Sen,  LANG Ming-Fei,  SUN Jing. Ni-CuO/ITO Electrode for Electrooxidation and Detection of Ethanol[J]. Chinese Journal of Analytical Chemistry, 2021, 49(10): 1722-1732. doi: 10.19756/j.issn.0253-3820.210565 shu

Ni-CuO/ITO电极对乙醇电催化氧化及检测的研究

    通讯作者: 于乃森,E-mail:yunaisen@dlnu.edu.cn; 郎明非,E-mail:langmingfei@dlu.edu.cn; 孙晶,E-mail:sunjing@dlu.edu.cn
  • 基金项目:

    辽宁省-沈阳材料科学国家研究中心联合研发基金项目(Nos.2019JH3/30100006,2019010281-JH3/301)、辽宁省自然科学基金项目(No.2021JH6/10500143)和广西精密导航技术与应用重点实验室开放基金项目(No.DH2020015)资助。

摘要: 以氧化铟锡(ITO)导电玻璃为基底,依次电沉积Ni和CuO,制备Ni-CuO/ITO电极。扫描电子显微镜(SEM)表征结果显示,Ni-CuO呈纳米花状结构,均匀分布在ITO基底上,X射线衍射(XRD)结果显示,Ni-CuO主要成分为Ni、NiSO4和CuO。分别研究了不同电极在碱性条件(1 mol/L KOH)下对乙醇(100 mmol/L)的电化学催化性能,ITO和CuO/ITO电极未显示乙醇催化活性,而Ni-CuO/ITO电极的催化能力可达到氧化峰电流密度20.90 mA/cm2,为Ni/ITO电极的1.7倍。进一步研究了Ni-CuO/ITO电极在不同扫描速度(20~100 mV/s)与不同浓度(10~500 mmol/L)乙醇溶液中电化学响应信号的变化。考察了Ni和CuO的沉积量对Ni-CuO/ITO电极乙醇电催化氧化活性的影响,发现以恒电位法沉积Ni 300 s、循环伏安法沉积CuO两圈时,Ni-CuO/ITO电极对乙醇电催化氧化具有最高的催化活性。以计时电流法测量10000 s后剩余的氧化峰电流密度为初始值的54.39%,显示了电极优异的长期稳定性。氧化峰电流与乙醇浓度在0.1~15 mmol/L范围内呈良好的线性关系,灵敏度为150 μA/(cm2(mmol/L)),检出限为0.047 μmol/L (S/N=3),乙醇的回收率为95.2%~104.1%,并且NaCl、KCl、Na2HPO4、山梨酸和柠檬酸等物质对乙醇的检测无明显干扰,表明Ni-CuO/ITO电极具有潜在的应用前景。

English


    1. [1]

      ALIMUJIANG A, JIANG P. Energy Sustainable Dev., 2020, 55:181-189.ALIMUJIANG A, JIANG P. Energy Sustainable Dev., 2020, 55:181-189.

    2. [2]

      CHEN Ying-Nan, CUI Jing-Song, LIU En-Hong, LIU Ao-Xue, HAN Ce, YANG Guo-Cheng. Chin. J. Anal. Chem., 2020, 48(11):1519-1525. 陈英楠, 崔劲松, 刘恩红, 柳傲雪, 韩策, 杨国程. 分析化学, 2020, 48(11):1519-1525.

    3. [3]

      WANG Z B, NING P, HU L H, NIE Q J, LIU Y G, ZHOU Y H, YANG J M. Renewable Energy, 2020,160:211-219.WANG Z B, NING P, HU L H, NIE Q J, LIU Y G, ZHOU Y H, YANG J M. Renewable Energy, 2020,160:211-219.

    4. [4]

      RAHMANI K, HABIBI B. RSC Adv., 2019, 9(58):34050-34064.RAHMANI K, HABIBI B. RSC Adv., 2019, 9(58):34050-34064.

    5. [5]

      DHARMALINGAM G, SIVASUBRAMANIAM R, PARTHIBAN S. J. Electron. Mater., 2020, 49(5):3009-3024.DHARMALINGAM G, SIVASUBRAMANIAM R, PARTHIBAN S. J. Electron. Mater., 2020, 49(5):3009-3024.

    6. [6]

      WANG W, WANG Y H, LIU S J, YAHIA M, DONG Y J, LEI Z Q. Int. J. Hydrogen Energy, 2019, 44(21):10637-10645.WANG W, WANG Y H, LIU S J, YAHIA M, DONG Y J, LEI Z Q. Int. J. Hydrogen Energy, 2019, 44(21):10637-10645.

    7. [7]

      YE N, BAI Y X, JIANG Z, FANG T. Int. J. Hydrogen Energy, 2020, 45(56):32022-32038.YE N, BAI Y X, JIANG Z, FANG T. Int. J. Hydrogen Energy, 2020, 45(56):32022-32038.

    8. [8]

      GUCHHAIT S K, PAUL S. J. Electrochem. Sci. Technol., 2016, 7(3):190-198.GUCHHAIT S K, PAUL S. J. Electrochem. Sci. Technol., 2016, 7(3):190-198.

    9. [9]

      PIETA I S, RATHI A, PIETA P, NOWAKOWSKI R, HOLDYNSKI M, PISAREK M, KAMINSKA A, GAWANDE M B, ZBORIL R. Appl. Catal. B, 2019, 244:272-283.PIETA I S, RATHI A, PIETA P, NOWAKOWSKI R, HOLDYNSKI M, PISAREK M, KAMINSKA A, GAWANDE M B, ZBORIL R. Appl. Catal. B, 2019, 244:272-283.

    10. [10]

      MCCRORY C C L, JUNG S, FERRER I M, CHATMAN S M, PETERS J C, JARAMILLO T F. J. Am. Chem. Soc., 2015, 137(13):4347-4357.MCCRORY C C L, JUNG S, FERRER I M, CHATMAN S M, PETERS J C, JARAMILLO T F. J. Am. Chem. Soc., 2015, 137(13):4347-4357.

    11. [11]

      MCCRORY C C L, JUNG S, PETERS J C, JARAMILLO T F. J. Am. Chem. Soc., 2013, 135(45):16977-16987.MCCRORY C C L, JUNG S, PETERS J C, JARAMILLO T F. J. Am. Chem. Soc., 2013, 135(45):16977-16987.

    12. [12]

      SHENDE P, KASTURE P, GAUD R S. Artif. Cells Nanomed. Biotechnol., 2018, 46:413-422.SHENDE P, KASTURE P, GAUD R S. Artif. Cells Nanomed. Biotechnol., 2018, 46:413-422.

    13. [13]

      ZHU J L, WEN M Q, WEN W, DU D, ZHANG X H, WANG S F, LIN Y H. Biosens. Bioelectron., 2018, 120:175-187.ZHU J L, WEN M Q, WEN W, DU D, ZHANG X H, WANG S F, LIN Y H. Biosens. Bioelectron., 2018, 120:175-187.

    14. [14]

      WANG S L, YANG X D, LIU Z, YANG D W, FENG L G. Nanoscale, 2020, 12(19):10827-10833.WANG S L, YANG X D, LIU Z, YANG D W, FENG L G. Nanoscale, 2020, 12(19):10827-10833.

    15. [15]

      YANG D W, YANG L T, ZHONG L, YU X, FENG L G. Electrochim. Acta, 2019, 295:524-531.YANG D W, YANG L T, ZHONG L, YU X, FENG L G. Electrochim. Acta, 2019, 295:524-531.

    16. [16]

      LI X G, NING S S, LIU X Y, SHANGGUAN E B, WU C K, LI J, WANG Z H, LI Q M. Ionics, 2019, 25(8):3775-3786.LI X G, NING S S, LIU X Y, SHANGGUAN E B, WU C K, LI J, WANG Z H, LI Q M. Ionics, 2019, 25(8):3775-3786.

    17. [17]

      CHEN Han, SUN Jian-Hang, YANG Guo-Cheng. Chin. J. Anal. Chem., 2021, 49(6):1008-1014. 陈汉, 孙健航, 杨国程. 分析化学, 2021, 49(6):1008-1014.

    18. [18]

      CAO M, CAO H Y, MENG W C, WANG Q X, BI Y, LIANG X X, YANG H B, ZHANG L, LANG M F, SUN J. Int. J. Hydrogen Energy, 2021, 46(56):28527-28536.CAO M, CAO H Y, MENG W C, WANG Q X, BI Y, LIANG X X, YANG H B, ZHANG L, LANG M F, SUN J. Int. J. Hydrogen Energy, 2021, 46(56):28527-28536.

    19. [19]

      HAN M, WANG N, ZHANG B, XIA Y J, LI J, HAN J R, Yao K L, GAO C C, HE C N, LIU Y C, WANG Z M, SEIFITOKALDANI A, SUN X H, LIANG H Y. ACS Catal., 2020, 10(17):9725-9734.HAN M, WANG N, ZHANG B, XIA Y J, LI J, HAN J R, Yao K L, GAO C C, HE C N, LIU Y C, WANG Z M, SEIFITOKALDANI A, SUN X H, LIANG H Y. ACS Catal., 2020, 10(17):9725-9734.

    20. [20]

      LOTFI N, FARAHANI T S, YAGHOUBINEZHAD Y, DARBAND G B. Int. J. Hydrogen Energy, 2019, 44(26):13296-13309.LOTFI N, FARAHANI T S, YAGHOUBINEZHAD Y, DARBAND G B. Int. J. Hydrogen Energy, 2019, 44(26):13296-13309.

    21. [21]

      KOBAYASHI Y, CAI Z W, CHANG G, HE Y B, OYAMA M. ACS Appl. Energy Mater., 2019, 2(8):6023-6030.KOBAYASHI Y, CAI Z W, CHANG G, HE Y B, OYAMA M. ACS Appl. Energy Mater., 2019, 2(8):6023-6030.

    22. [22]

      SHARMA P, RADHAKRISHNAN S, KHIL M, KIM H, KIM B. J. Electroanal. Chem., 2018, 808:236-244.SHARMA P, RADHAKRISHNAN S, KHIL M, KIM H, KIM B. J. Electroanal. Chem., 2018, 808:236-244.

    23. [23]

      SILVA L S R, MELO I G, MENESES C T, LOPEZ-SUAREZ F E, EGUILUZ K I B, SALAZAR-BANDA G R. J. Electroanal. Chem., 2020, 857:113754.SILVA L S R, MELO I G, MENESES C T, LOPEZ-SUAREZ F E, EGUILUZ K I B, SALAZAR-BANDA G R. J. Electroanal. Chem., 2020, 857:113754.

    24. [24]

      SOGANCI T, AYRANCI R, HARPUTLU E, OCAKOGLU K, ACET M, FARLE M, UNLU C G, AK M. Sens. Actuators, B, 2018, 273:1501-1507.SOGANCI T, AYRANCI R, HARPUTLU E, OCAKOGLU K, ACET M, FARLE M, UNLU C G, AK M. Sens. Actuators, B, 2018, 273:1501-1507.

    25. [25]

      AMIN S, TAHIRA A, SOLANGI A R, MAZZARO R, IBUPOTO Z H, FATIMA A, VOMIERO A. Electroanalysis, 2020, 32(5):1052-1059.AMIN S, TAHIRA A, SOLANGI A R, MAZZARO R, IBUPOTO Z H, FATIMA A, VOMIERO A. Electroanalysis, 2020, 32(5):1052-1059.

    26. [26]

      MUKHERJEE P, SARATHI P R, MANDALB K, BHATTACHARJEEB D, DASGUPTA S, KUMAR S, BHATTACHARYA N. Electrochim. Acta, 2015, 154:447-455.MUKHERJEE P, SARATHI P R, MANDALB K, BHATTACHARJEEB D, DASGUPTA S, KUMAR S, BHATTACHARYA N. Electrochim. Acta, 2015, 154:447-455.

    27. [27]

      ZHENG W R, LI Y, LEE L Y S. Electrochim. Acta, 2019, 308:9-19.ZHENG W R, LI Y, LEE L Y S. Electrochim. Acta, 2019, 308:9-19.

    28. [28]

      LONG Y Y, ZHAN J, HUANG J Y. Energy Mater., 2019, 71(4):1485-1491.LONG Y Y, ZHAN J, HUANG J Y. Energy Mater., 2019, 71(4):1485-1491.

    29. [29]

      FU Y Y, WANG T, SU W, YU Y A, HU J B. Electrochim. Acta, 2015, 174:199-206.FU Y Y, WANG T, SU W, YU Y A, HU J B. Electrochim. Acta, 2015, 174:199-206.

    30. [30]

      GUCHHAIT S K, PAUL S. J. Electrochem. Sci. Technol., 2016, 7(3):190-198.GUCHHAIT S K, PAUL S. J. Electrochem. Sci. Technol., 2016, 7(3):190-198.

    31. [31]

      LIN Y C, WEI W C J. Int. J. Hydrogen Energy, 2020, 45(46):24253-24262.LIN Y C, WEI W C J. Int. J. Hydrogen Energy, 2020, 45(46):24253-24262.

    32. [32]

      PASSOS A R, PULCINELLI S H, SANTILLI C V, BRIOIS V. Catal. Today, 2019, 336:122-130.PASSOS A R, PULCINELLI S H, SANTILLI C V, BRIOIS V. Catal. Today, 2019, 336:122-130.

    33. [33]

      VICENTE N, HARO M, GARCIA-BELMONTE G. Chem. Commun., 2018, 54(9):1025-1040.VICENTE N, HARO M, GARCIA-BELMONTE G. Chem. Commun., 2018, 54(9):1025-1040.

    34. [34]

      GUO F, YE K, DU M M, HUANG X M, CHENG K, WANG G L, CAO D X. Electrochim. Acta, 2016, 210:474-482.GUO F, YE K, DU M M, HUANG X M, CHENG K, WANG G L, CAO D X. Electrochim. Acta, 2016, 210:474-482.

    35. [35]

      WU X Q, LEE H L, LIU H Z, LU L J, WU X J, SUN L C. Int. J. Hydrogen Energy, 2020, 45(41):21354-21363.WU X Q, LEE H L, LIU H Z, LU L J, WU X J, SUN L C. Int. J. Hydrogen Energy, 2020, 45(41):21354-21363.

    36. [36]

      WU K L, JIANG B B, CAI Y M, WEI X W, LI X Z, CHEONG W C. ChemElectroChem, 2017, 4(6):1419-1428.WU K L, JIANG B B, CAI Y M, WEI X W, LI X Z, CHEONG W C. ChemElectroChem, 2017, 4(6):1419-1428.

    37. [37]

      AMINI N, MALEKI A. J. Electroanal. Chem., 2020, 877:114463.AMINI N, MALEKI A. J. Electroanal. Chem., 2020, 877:114463.

    38. [38]

      BILGI M, SAHIN E, AYRANCI E. J. Electroanal. Chem., 2018, 813:67-74.BILGI M, SAHIN E, AYRANCI E. J. Electroanal. Chem., 2018, 813:67-74.

    39. [39]

      NAHIRNY E P, BERGAMINI M F, MARCOLINO-JUNIOR L H. J. Electroanal. Chem., 2020, 877:114659.NAHIRNY E P, BERGAMINI M F, MARCOLINO-JUNIOR L H. J. Electroanal. Chem., 2020, 877:114659.

    40. [40]

      TETTAMANTI C S, RAMIREZ M L, GUTIERREZ F A, BERCOFF P G, RIVAS G A, RODRIGUEZ M C. Microchem. J., 2018, 142:159-166.TETTAMANTI C S, RAMIREZ M L, GUTIERREZ F A, BERCOFF P G, RIVAS G A, RODRIGUEZ M C. Microchem. J., 2018, 142:159-166.

  • 加载中
计量
  • PDF下载量:  10
  • 文章访问数:  852
  • HTML全文浏览量:  110
文章相关
  • 收稿日期:  2021-06-13
  • 修回日期:  2021-07-21
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章