Citation: LIU Hui,  LIU Meng-Meng,  YANG Yuan-Jie,  LEI Yun,  LIU Ai-Lin. Study on Electroosmotic Flow of 3D Print Based Microfluidic Electrophoresis Chip[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(11): 1937-1944. doi: 10.19756/j.issn.0253-3820.210526 shu

Study on Electroosmotic Flow of 3D Print Based Microfluidic Electrophoresis Chip

  • Corresponding author: LIU Ai-Lin, ailinliu@fjmu.edu.cn
  • Received Date: 26 May 2021
    Revised Date: 10 August 2021

    Fund Project: Supported by the National Natural Science Foundation of China (No.82072379), the Guiding Project of Science and Technology Plan of Fujian Province, China (No.2019Y0012) and Mid-Aged and Young Teachers Education Research Project of Fujian Province, China (No.JAT200147).

  • Two different types of 3D printers were employed for exploring the electroosmotic performance of microfluidic electrophoresis chip:one was Stereo lithography appearance (SLA) type using resin as material for design and preparation of four different kinds of micro-channels, i.e. regular triangle, square, 3/4 regular icosagon and 3/4 circle; the other was Fused deposition modeling (FDM) type using polymer filament as material for design and preparation of square channel. The influence of pH value of buffer solution, microchannel cross-section shape and types of 3D printers & craftsmanship of fabrication were investigated by current monitoring method. The results showed that the electroosmotic mobility of microchannel was negatively correlated with the pH value of buffer solution in the SLA 3D printed electrophoresis chip, whose surface carried positive charge. Among the four different microchannels, the square one had the largest μEOF value. As for the FDM 3D printed electrophoresis chip, it had opposite linear relation between EOF mobility and pH value, demonstrating its surface carried negative charge, but with better linearity and lower electroosmotic mobility. SLA type had multiple production potential but high viscosity resin, which was difficult to remove from microchannels, made the process complex and resulted in the final chip lack of fabrication stability. FDM type was advantageous in fabrication stability, but the diversity of microchannels' shape was limited. This study developed a new method for the fabrication of microchannels and explored the electroosmotic performance of them, which was expected to provide scientific theories for 3D printed microfluidic electrophoresis chip as well as its application in electrophoretic ananlysis.
  • 加载中
    1. [1]

      OLEKSANDROV S, AMAN A, LIM W, KIM Y, BAE N H, LEE K G, LEE S J, PARK S. Electrophoresis, 2018, 39(3):456-461.

    2. [2]

      WU X, MENG Q, ZHANG Q, FAN L, CAO C. Sens. Actuators, B, 2020, 309:127773.

    3. [3]

      NGUYEN V D, NGUYEN H V, BUI K H, SEO T S. Sens. Actuators, B, 2019, 301:127108.

    4. [4]

      WANG Y, WANG J, WU X, JIANG Z, WANG W. Electrophoresis, 2019, 40(6):969-978.

    5. [5]

      MAJARIKAR V, TAKEHARA H, ICHIKI T. Microfluid. Nanofluid., 2018, 22(10):110-116.

    6. [6]

      SÁZELOVÁ P, KASICKA V, KOVAL D, PRUSÍK Z, FANALI S, ATURKIZ. Electrophoresis, 2007, 28(5):756-766.

    7. [7]

      LI J, PENG R, LI D. Anal. Chim. Acta, 2019, 1059:68-79.

    8. [8]

      DUBEY K, GUPTA A, BAHGA S S. Electrophoresis, 2019, 40(5):730-739.

    9. [9]

      WANG C Y, CHANG C C. Electrophoresis, 2007, 28(18):3296-3301.

    10. [10]

      QI C, NG C O. Eur. J. Mech. B, Fluid., 2015, 52:160-168.

    11. [11]

      MAGNINI M, MATAR O K. Int. J. Heat Mass Transfer, 2020, 150:119322.

    12. [12]

      ZHOU L, FU J, HE Y. Adv. Funct. Mater., 2020, 30(28):2000187

    13. [13]

      CASTIAUX A D, CURRENS E R, MARTIN R S. Analyst, 2020, 145(4):3274-3282.

    14. [14]

      CHEN J, LIU C Y, WANG X, SWEET E, LIN L. Biosens. Bioelectron., 2020, 150:111900.

    15. [15]

      BEAUCHAMP M J, NIELSEN A V, GONG H, NORDIN G P, WOOLLEY A T. Anal. Chem., 2019, 91(11):7418-7425.

    16. [16]

      ANCIAUX S K, GEIGER M, BOWSER M T. Anal. Chem., 2016, 88(15):7675-7682.

    17. [17]

      WALCZAK R, ADAMSKI K, KUBICKI W. Sens. Actuators, B, 2018, 261:474-480.

    18. [18]

      RAOUFI M A, RAZAVI B S, NIAZMAND H, ROUHI O, ASADNIA M, RAZMJOU A, EBRAHIMI W M. Soft Matter, 2020, 16(10):2448-2459.

    19. [19]

      CARRELL C S, MCCORD C P, WYDALLIS R M, HENRY C S. Anal. Chim. Acta, 2020, 1124:78-84.

    20. [20]

      HUANG X, GORDON M J, ZARE R N. Anal. Chem., 1988, 60(17):1837-1838.

    21. [21]

      PARK J, YE Q, TOPP E M, MISRA A, KIEWEG S L, SPENCER P. J. Biomed. Mater. Res., Part A, 2010, 93(4):1245-1251.

    22. [22]

      YEO H, KHAN A. J. Am. Chem. Soc., 2020, 142(7):3479-3488.

    23. [23]

      DÖPKE M F, HARTKAMP R. J. Chem. Phys., 2021, 154(9):094701.

    24. [24]

      CHANG Y W, CHANG C C. Electrophoresis, 2010, 28(18):3296-3301.

    25. [25]

      ZHANG J, LIU J, WANG C, CHEN F, WANG X, LIN K. Bioact. Mater., 2020, 5(1):9-16.

    26. [26]

      AHMED W, ALNAJJAR F, ZANELDIN E, AL-MARZOUQI A H, KHALID S. Materials, 2020, 13(18):4065-4088.

  • 加载中
    1. [1]

      Yuexi Guo Zhaoyang Li Jingwei Dai . Charlie and the 3D Printing Chocolate Factory. University Chemistry, 2024, 39(9): 235-242. doi: 10.3866/PKU.DXHX202309067

    2. [2]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    3. [3]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    4. [4]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    5. [5]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    6. [6]

      Chengcheng Si Linshan Chai Huiyuan Liu Liye Sun Shijian Cheng Hailing Li Wenyun Wang Fang Liu Qing Feng Min Liu . Harry Potter China Tour Themed Innovative Science Popularization Experiment: Chemistry Magic Meets the Real World at Wuhan Station. University Chemistry, 2024, 39(9): 283-287. doi: 10.12461/PKU.DXHX202401069

    7. [7]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    8. [8]

      Jingwen WangPeizhang ZhaoMengmeng LiJun LiYunfeng Lin . Remedying infectious bone defects via 3D printing technology. Chinese Chemical Letters, 2025, 36(9): 110686-. doi: 10.1016/j.cclet.2024.110686

    9. [9]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    10. [10]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    11. [11]

      Qi ZhangBin HanYucheng JinMingrun LiEnhui ZhangJianzhuang Jiang . 2D and 3D phthalocyanine covalent organic frameworks for electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2025, 36(9): 110330-. doi: 10.1016/j.cclet.2024.110330

    12. [12]

      Changjun YouChunchun WangMingjie CaiYanping LiuBaikang ZhuShijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014

    13. [13]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    14. [14]

      Chengmin HuPingxuan LiuZiyang SongYaokang LvHui DuanLi XieLing MiaoMingxian LiuLihua Gan . Tailor-made overstable 3D carbon superstructures towards efficient zinc-ion storage. Chinese Chemical Letters, 2025, 36(4): 110381-. doi: 10.1016/j.cclet.2024.110381

    15. [15]

      Run ChaiQiujie WuYongchao LiuXiaohui SongXuyong FengYi SunHongfa Xiang . A 3D dual layer host with enhanced sodiophilicity as stable anode for high-energy sodium metal batteries. Chinese Chemical Letters, 2025, 36(6): 110007-. doi: 10.1016/j.cclet.2024.110007

    16. [16]

      Zhilong JiangQiaolin ChenMin WangFengxue LiuXiaojie HuangBangtang ChenQiangqiang DongMingzhao ChenYifan LinPingshan WangJun Wang . 3D fractal expanding of a Sierpiński triangular-faced supramolecular cage for enhanced photocatalytic performance. Chinese Chemical Letters, 2026, 37(1): 111168-. doi: 10.1016/j.cclet.2025.111168

    17. [17]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    18. [18]

      Xiaojun LiuLang QinYanlei Yu . Dynamic Manipulation of Photonic Bandgaps in Cholesteric Liquid Crystal Microdroplets for Applications. Acta Physico-Chimica Sinica, 2024, 40(5): 2305018-0. doi: 10.3866/PKU.WHXB202305018

    19. [19]

      Xiaoyi Sun Duohang Bi Hankun Qiao Yijing Liu Jintao Zhu . Painless Injection: Microneedles Revolutionizing Beauty and Health Brought. University Chemistry, 2025, 40(10): 166-174. doi: 10.12461/PKU.DXHX202411006

    20. [20]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

Metrics
  • PDF Downloads(20)
  • Abstract views(1234)
  • HTML views(285)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return