方波型微混合器内的流动特性及其影响因素研究

刘赵淼 赵思宇 赵晟 殷参 徐迎丽 逄燕

引用本文: 刘赵淼, 赵思宇, 赵晟, 殷参, 徐迎丽, 逄燕. 方波型微混合器内的流动特性及其影响因素研究[J]. 分析化学, 2021, 49(10): 1666-1677. doi: 10.19756/j.issn.0253-3820.210515 shu
Citation:  LIU Zhao-Miao,  ZHAO Si-Yu,  ZHAO Sheng,  YIN Shen,  XU Ying-Li,  PANG Yan. Study on Flow Characteristics and Influencing Factors in Square Wave Micromixer[J]. Chinese Journal of Analytical Chemistry, 2021, 49(10): 1666-1677. doi: 10.19756/j.issn.0253-3820.210515 shu

方波型微混合器内的流动特性及其影响因素研究

    通讯作者: 逄燕,E-mail:pangyan@bjut.edu.cn
  • 基金项目:

    国家自然科学基金项目(Nos.11872083,11702007)资助。

摘要: 微混合器通常为实验室芯片(LOC)的前处理装置,研究其混合机理及结构对混合性能的影响规律,可为微混合器的设计加工提供指导。本研究考察了通道雷诺数(Re)在0.1~80时方波型微混合器的内部流动特性,并在分子扩散主导和对流扩散主导阶段分析了通道结构对流体流动及混合性能的影响。结果表明,随通道中Re的增大,流体混合从分子扩散主导过渡到对流扩散主导阶段。分子扩散主导阶段,影响流体混合强度的因素为特征扩散长度,通道宽度比通道高度对混合强度的影响程度更大,通道宽度的缩小可以显著提升分子扩散阶段流体的混合强度。当Re=0.5时,通道宽度从400 μm缩小到200 μm后,混合强度提升了34.59%。对流扩散主导阶段,在通道转弯处所产生旋涡的大小和强度影响混合强度,正方形截面的方波型微混合器旋涡发展最充分、混合性能最优,缩小正方形截面的尺寸可以增大旋涡强度、利于混合强度的提升。当Re=80时,通道截面边长为200 μm的微混合器比边长为300 μm的微混合器混合强度提高了22.71%。

English


    1. [1]

      JEONG G S, CHUNG S, KIM C B, LEE S H. Analyst, 2010, 135(3):460-473.JEONG G S, CHUNG S, KIM C B, LEE S H. Analyst, 2010, 135(3):460-473.

    2. [2]

      LEE T Y, HYUN K A, KIM S I, JUNG H I. Sens. Actuators, B, 2017, 238:1144-1150.LEE T Y, HYUN K A, KIM S I, JUNG H I. Sens. Actuators, B, 2017, 238:1144-1150.

    3. [3]

      KEFALA I N, PAPADOPOULOS V E, KARPOU G, KOKKORIS G, PAPADAKIS G, TSEREPI A. Microfluid. Nanofluid., 2015, 19(5):1047-1059.KEFALA I N, PAPADOPOULOS V E, KARPOU G, KOKKORIS G, PAPADAKIS G, TSEREPI A. Microfluid. Nanofluid., 2015, 19(5):1047-1059.

    4. [4]

      JIANG L G, ZENG Y, SUN Q Q, SUN Y R, GUO Z H, QU J N Y, YAO S H. Anal. Chem., 2015, 87(11):5589-5595.JIANG L G, ZENG Y, SUN Q Q, SUN Y R, GUO Z H, QU J N Y, YAO S H. Anal. Chem., 2015, 87(11):5589-5595.

    5. [5]

      ZHAO S G, HUANG P H, ZHANG H Y, RICH J, BACHMAN H, YE J, ZHANG W F, CHEN C Y, XIE Z M, TIAN Z H, KANG P T, FU H, HUANG T J. Lab Chip, 2021, 21(12):2453-2463.ZHAO S G, HUANG P H, ZHANG H Y, RICH J, BACHMAN H, YE J, ZHANG W F, CHEN C Y, XIE Z M, TIAN Z H, KANG P T, FU H, HUANG T J. Lab Chip, 2021, 21(12):2453-2463.

    6. [6]

      OKUDUCU M B, ARAL M M. Micromachines, 2021, 12(4):372.OKUDUCU M B, ARAL M M. Micromachines, 2021, 12(4):372.

    7. [7]

      LI Y, XU F, LIU C, XU Y Z, FENG X J, LIU B F. Analyst, 2013, 138(16):4475-4482.LI Y, XU F, LIU C, XU Y Z, FENG X J, LIU B F. Analyst, 2013, 138(16):4475-4482.

    8. [8]

      ZHOU Zhuo-Heng, LIU Ya, ZHANG Bo. Chin. J. Anal. Chem., 2019, 47(4):500-507. 周拙恒, 刘娅, 张博. 分析化学, 2019, 47(4):500-507.

    9. [9]

      CHEN X Y, LI T C, ZENG H, HU Z L, FU B D. Int. J. Heat Mass Transfer, 2016, 98:131-140.CHEN X Y, LI T C, ZENG H, HU Z L, FU B D. Int. J. Heat Mass Transfer, 2016, 98:131-140.

    10. [10]

      HOSSAIN S, LEE I, KIM S M, KIM K Y. Chem. Eng. J., 2017, 327:268-277.HOSSAIN S, LEE I, KIM S M, KIM K Y. Chem. Eng. J., 2017, 327:268-277.

    11. [11]

      CHEN X Y, LI T C. Chem. Eng. J., 2017, 313:1406-1414.CHEN X Y, LI T C. Chem. Eng. J., 2017, 313:1406-1414.

    12. [12]

      SHIH T R, CHUNG C K. Microfluid. Nanofluid., 2008, 5(2):175-183.SHIH T R, CHUNG C K. Microfluid. Nanofluid., 2008, 5(2):175-183.

    13. [13]

      LEE C Y, WANG W T, LIU C C, FU L M. Chem. Eng. J., 2016, 288:146-160.LEE C Y, WANG W T, LIU C C, FU L M. Chem. Eng. J., 2016, 288:146-160.

    14. [14]

      CHEN X Y, LI T C, HU Z L. Microsyst. Technol., 2017, 23(7):2649-2656.CHEN X Y, LI T C, HU Z L. Microsyst. Technol., 2017, 23(7):2649-2656.

    15. [15]

      ANSARI M A, KIM K Y, ANWAR K, KIM S M. J. Micromech. Microeng., 2010, 20(5):055007.ANSARI M A, KIM K Y, ANWAR K, KIM S M. J. Micromech. Microeng., 2010, 20(5):055007.

    16. [16]

      BAYAREH M, ASHANI M N, USEFIAN A. Chem. Eng. Process.:Process Intensif., 2020, 147:107771.BAYAREH M, ASHANI M N, USEFIAN A. Chem. Eng. Process.:Process Intensif., 2020, 147:107771.

    17. [17]

      RAZA W, HOSSAIN S, KIM K Y. Micromachines, 2020, 11(5):455.RAZA W, HOSSAIN S, KIM K Y. Micromachines, 2020, 11(5):455.

    18. [18]

      SANTANA H S, TORTOLA D S, SILVA J L, TARANTO O P. Energy Conv. Manag., 2017, 141(SI):28-39.SANTANA H S, TORTOLA D S, SILVA J L, TARANTO O P. Energy Conv. Manag., 2017, 141(SI):28-39.

    19. [19]

      XU J J, CHEN X Y. Int. J. Heat Mass Transf., 2019, 141:346-352.XU J J, CHEN X Y. Int. J. Heat Mass Transf., 2019, 141:346-352.

    20. [20]

      PRADEEP A, RAVEENDRAN J, RAMACHANDRAN T, NAIR B G, BABU T G S. Microelectron. Eng., 2016, 165:32-40.PRADEEP A, RAVEENDRAN J, RAMACHANDRAN T, NAIR B G, BABU T G S. Microelectron. Eng., 2016, 165:32-40.

    21. [21]

      ZOU L L, GONG Y, CHEN L S, YI X, LIU W K. Chem. Eng. Sci., 2021, 244:116816.ZOU L L, GONG Y, CHEN L S, YI X, LIU W K. Chem. Eng. Sci., 2021, 244:116816.

    22. [22]

      VATANKHAH P, SHAMLOO A. Anal. Chim. Acta, 2018, 1022:96-105.VATANKHAH P, SHAMLOO A. Anal. Chim. Acta, 2018, 1022:96-105.

    23. [23]

      AKAR S, TAHERI A, BAZAZ R, WARKIANI E, SHAEGH M. Chem. Eng. Process.:Process Intensif., 2021, 160:108251.AKAR S, TAHERI A, BAZAZ R, WARKIANI E, SHAEGH M. Chem. Eng. Process.:Process Intensif., 2021, 160:108251.

    24. [24]

      KUO J N, LIAO H S, LI X M. Microsyst. Technol., 2017, 23(3):721-730.KUO J N, LIAO H S, LI X M. Microsyst. Technol., 2017, 23(3):721-730.

    25. [25]

      LA M, PARK S J, KIM H W, PARK J J, AHN K T, RYEW S M, KIM D S. Microfluid. Nanofluid., 2013, 15(1):87-98.LA M, PARK S J, KIM H W, PARK J J, AHN K T, RYEW S M, KIM D S. Microfluid. Nanofluid., 2013, 15(1):87-98.

    26. [26]

      SU T Y, CHENG K, WANG J Y, XU Z, DAI W. Microsyst. Technol., 2019, 25(11):4391-4397.SU T Y, CHENG K, WANG J Y, XU Z, DAI W. Microsyst. Technol., 2019, 25(11):4391-4397.

    27. [27]

      TRIPATHI E, PATOWARI P K, PATI S. Chem. Eng. Process.:Process Intensif., 2021, 162:108335.TRIPATHI E, PATOWARI P K, PATI S. Chem. Eng. Process.:Process Intensif., 2021, 162:108335.

    28. [28]

      RAMPALLI S, DUNDI T M, CHANDRASEKHAR S, RAJU V R K, CHANDRAMOHAN V P. Chem. Prod. Process Model., 2020, 15(2):20190071.RAMPALLI S, DUNDI T M, CHANDRASEKHAR S, RAJU V R K, CHANDRAMOHAN V P. Chem. Prod. Process Model., 2020, 15(2):20190071.

    29. [29]

      RUDYAK V, MINAKOV A. Micromachines, 2014, 5(4):886-912.RUDYAK V, MINAKOV A. Micromachines, 2014, 5(4):886-912.

    30. [30]

      WANG R J, LIJIN B Q, SHI D D, ZHU Z F. Sens. Actuators, B, 2017, 249:395-404.WANG R J, LIJIN B Q, SHI D D, ZHU Z F. Sens. Actuators, B, 2017, 249:395-404.

    31. [31]

      LIU Zhao-Miao, WANG Wen-Kai, PANG Yan. Chin. J. Theoret. Appl. Mech., 2018, 50(2):254-262. 刘赵淼, 王文凯, 逄燕. 力学学报, 2018, 50(2):254-262.

    32. [32]

      HUNT J C R, WRAY A A, MOIN P. Studying Turbulence Using Numerical Simulation Databases, 1988:193-208.HUNT J C R, WRAY A A, MOIN P. Studying Turbulence Using Numerical Simulation Databases, 1988:193-208.

    33. [33]

      KAMHOLZ A E, YAGER P. Biophys. J., 2001, 80(1):155-160.KAMHOLZ A E, YAGER P. Biophys. J., 2001, 80(1):155-160.

    34. [34]

      SULLIVAN S P, AKPA B S, MATTHEWS S M, FISHER A C, GLADDEN L F, JOHNS M L. Sens. Actuators, B, 2007, 123(2):1142-1152.SULLIVAN S P, AKPA B S, MATTHEWS S M, FISHER A C, GLADDEN L F, JOHNS M L. Sens. Actuators, B, 2007, 123(2):1142-1152.

  • 加载中
计量
  • PDF下载量:  1
  • 文章访问数:  30
  • HTML全文浏览量:  3
文章相关
  • 收稿日期:  2021-05-10
  • 修回日期:  2021-08-06
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章