Citation: OU Pan-Pan,  WEI Fu-Cun,  WU Ye-Yu,  TANG Xiao-Qiang,  CHEN Zhi-Fan,  WU Jia-Wen,  LIN Yu,  TAN Xue-Cai. A Photoelectrochemical Sensor for Sensitive Detection of Hg2+ Based on M-TiO2-CdSe Quantum Dots Composite Material[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(11): 1897-1907. doi: 10.19756/j.issn.0253-3820.210513 shu

A Photoelectrochemical Sensor for Sensitive Detection of Hg2+ Based on M-TiO2-CdSe Quantum Dots Composite Material

  • Corresponding author: TAN Xue-Cai, gxunxctan@126.com
  • Received Date: 19 May 2021
    Revised Date: 26 August 2021

    Fund Project: Supported by the National Natural Science Foundation of China (No.21365004), the Key Research and Development Project of Guangxi (No.AB18126048), the Guangxi Innovation-driven Development Special Fund Project (No.AA18118013-10), the Specific Research Project of Guangxi for Research Bases and Talents (No.AD18126005), Young and Middleaged Teachers Basic Ability Promotion Project by Guangxi Education Department (No.2019KY0162), the Innovation Project of Guangxi University for Nationalities Graduate Education (No.gxun-chxps202077).

  • A novel and simple photoelectrochemical (PEC) sensor for ultrasensitive detection of mercury ion (Hg2+) was fabricated based on metal organic framework-derived porous titanium dioxide-cadmium selenide quantum dots (M-TiO2-CdSe QDs) composites. The morphology and structure of different materials were characterized by field emission scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS). The performance of the sensor was studied by current time method (i-t) and electrochemical impedance spectroscopy technology (EIS). The results showed that the prepared M-TiO2 not only retained the original morphology and structure of MIL-125(Ti), but also exhibited more abundant pore structure and good PEC properties. Comparing with M-TiO2, the as-prepared M-TiO2-CdSe QDs nanocomposite exhibited excellent PEC performances including about 2-fold enhancement of photocurrent intensity, which were ascribed to the large surface of M-TiO2 and the introduction of CdSe QDs. Based on the selective inhibitory effect of Hg2+ on the photocurrent intensity of the M-TiO2-CdSe QDs PEC system, a novel PEC sensor for Hg2+ concentration determination was constructed, with a wide linear response range of 0.005-5 nmol/L and a detection limit of 4.2 pmol/L (S/N=3). The detection method was used for analysis of Hg2+ in real water samples with the spiked recoveries of 96%-110%, and the possible detection mechanism of the M-TiO2-CdSe QDs PEC system was also discussed.
  • 加载中
    1. [1]

      WEI H, WANG Z D, YANG L M, TIAN S L, HOU C J, LU Y. Analyst, 2010, 135(6):1406-1410.

    2. [2]

      CHEN T, ZHU W P, XU Y F, ZHANG S Y, ZHANG X J, QIAN X H. Dalton Trans., 2010, 39(5):1316-1320.

    3. [3]

      YUAN H Z, JI W, CHU S W, LIU Q, QIAN S Y, GUANG J Y, WANG J B, HAN X Y, MASSON J F, PENG W. ACS Sens., 2019, 4(3):704-710.

    4. [4]

      XIONG E H, WU L, ZHOU J W, YU P, ZHANG X H, CHEN J H. Anal. Chim. Acta, 2015, 853(1):242-248.

    5. [5]

    6. [6]

      MA Z Y, XU F, QIN Y, ZHAO W W, XU J J, CHEN H Y. Anal. Chem., 2016, 88(8):4183-4187.

    7. [7]

      LIU L X, FAN G C, ZHANG J R, ZHU J J. Anal. Chim. Acta, 2018, 1027(16):33-40.

    8. [8]

      ZHENG H L, YI H, DAI H, FANG D D, HONG Z S, LIN D M, ZHENG X Q, LIN Y Y. Sens. Actuators, B, 2018, 269(15):27-35.

    9. [9]

    10. [10]

      LUO Y N, TAN X C, YOUNG D J, CHEN Q Y, HUANG Y H, FENG D F, AI C H, MI Y. Anal. Chim. Acta, 2020, 1115(8):33-40.

    11. [11]

      TANG X H, LI D Y. J. Phys. Chem. C, 2008, 112(14):5405-5409.

    12. [12]

      CHAN W C W, MAXWELL D J, GAO X H, BAILEY R E, HAN M Y, NIE S M. Curr. Opin. Biotechnol., 2002, 13(1):40-46.

    13. [13]

      YANG G, CHEN D M, DING H, FENG J J, ZHANG J Z, ZHU Y F, HAMID S, BAHNEMANN D W. Appl. Catal., B, 2017, 219(15):611-618.

    14. [14]

      WANG Z Q, LI X, XU H, YANG Y, CUI Y J, PAN H G, WANG Z Y, CHEN B L, QIAN G D. J. Mater. Chem. A, 2014, 2(31):12571-12575.

    15. [15]

      LIU L P, PENG Q, LI Y D. Inorg. Chem., 2008, 47(11):5022-5028.

    16. [16]

      ZHONG Y Q, CHEN W W, YU S, XIE Z H, WEI S Q, ZHOU Y. ACS Omega, 2018, 3(12):17762-17769.

    17. [17]

      JIN H B, PRASHANT V K. Adv. Funct. Mater., 2010, 20(12):1970-1976.

    18. [18]

      GRACIA F, HOLGADO J P, CABALLERO A, GONZALEZ-ELIPE A R. J. Phys. Chem. B, 2004, 108(45):17466-17476.

    19. [19]

      ZHEN C, WU T T, MOHAMMAD W K, IQBAL I, LIU G, CHENG H M. Chin. J. Catal., 2015, 36(12):2171-2177.

    20. [20]

      YU J C, YU J G, TANG H Y, ZHANG L Z. J. Mater. Chem., 2002, 12(1):81-85.

    21. [21]

      YU H J, ZHAO Y F, ZHOU C, SHANG L, PENG Y, CAO Y H, WU L Z, TUNG C H, ZHANG T R. J. Mater. Chem. A, 2014, 2(10):3344-3351.

    22. [22]

      GE L, ZUO F, LIU J K, MA Q, WANG C, SUN D Z, LUDWIG B, FENG P Y. J. Phys. Chem. C, 2012, 116(25):13708-13714.

    23. [23]

      LEONOR D L C, KOEN L, ROBERTO O, JOSE M G, CONCEPCION A, BAETRIZ H J. J. Phys. Chem. C, 2014, 118(9):4998-5004.

    24. [24]

      XU D W, YANG M K, LIU Y, ZHU R, LV X D, ZHANG C, LIU B. J. Alloys Compd., 2020, 822(5):153685.

    25. [25]

      GAO P C, MA H M, YAN T, WU D, REN X, YANG J J, DU B, WEI Q. Dalton Trans., 2015, 44(2):773-781.

    26. [26]

      LI H B, ZHANG Y, WANG X Q, GAO Z N. Microchim. Acta, 2008, 160(1):119-123.

    27. [27]

      LI J, LU L P, KANG T F, CHENG S Y. Biosens. Bioelectron., 2016, 77(15):740-745.

    28. [28]

      JIN H L, ZHANG M L, WEI M, CHENG J H. Microchim. Acta, 2019, 186(4):264.

    29. [29]

      YUAN H Z, JI W, CHU S W, LIU Q, QIAN S Y, GUANG J Y, WANG J B, HAN X Y, JEAN-FRANCOIS M, PENG W. ACS Sens., 2019, 4(3):704-710.

    30. [30]

      LIAN Q, LIU H, ZHENG X F, LI X M, ZHANG F J, GAO J. Appl. Surf. Sci., 2019, 483(31):551-561.

    31. [31]

      ZHANG Y, XIAO J Y, ZHU Y, TIAN L J, WANG W K, ZHU T T, LI W W, YU H Q. Anal. Chem., 2020, 92(5):3990-3997.

  • 加载中
    1. [1]

      Lin′an CAODengyue MAGang XU . Research advances in electrically conductive metal-organic frameworks-based electrochemical sensors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1953-1972. doi: 10.11862/CJIC.20250160

    2. [2]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    3. [3]

      Ping YeLingshuang QinMengyao HeFangfang WuZengye ChenMingxing LiangLibo Deng . Potential of Zero Charge-Mediated Electrochemical Capture of Cadmium Ions from Wastewater by Lotus Leaf-Derived Porous Carbons. Acta Physico-Chimica Sinica, 2025, 41(3): 100023-0. doi: 10.3866/PKU.WHXB202311032

    4. [4]

      Ke ZhaoZhen LiuLuyao LiuChangyuan YuJingshun PanXuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029

    5. [5]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    6. [6]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    7. [7]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-0. doi: 10.3866/PKU.WHXB202310046

    8. [8]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    9. [9]

      Yun ChenDaijie DengLi XuXingwang ZhuHenan LiChengming Sun . Covalent bond modulation of charge transfer for sensitive heavy metal ion analysis in a self-powered electrochemical sensing platform. Acta Physico-Chimica Sinica, 2026, 42(1): 100144-0. doi: 10.1016/j.actphy.2025.100144

    10. [10]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    11. [11]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    12. [12]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    13. [13]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    14. [14]

      Ping LIGeng TANXin HUANGFuxing SUNJiangtao JIAGuangshan ZHUJia LIUJiyang LI . Green synthesis of metal-organic frameworks with open metal sites for efficient ammonia capture. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2063-2068. doi: 10.11862/CJIC.20250020

    15. [15]

      Shiyang HeDandan ChuZhixin PangYuhang DuJiayi WangYuhong ChenYumeng SuJianhua QinXiangrong PanZhan ZhouJingguo LiLufang MaChaoliang Tan . Pt Single-Atom-Functionalized 2D Al-TCPP MOF Nanosheets for Enhanced Photodynamic Antimicrobial Therapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-0. doi: 10.1016/j.actphy.2025.100046

    16. [16]

      Xiaogang YANGXinya ZHANGJing LIHuilin WANGMin LIXiaotian WEIXinci WULufang MA . Synthesis, structure, and photoelectric properties of Zinc(Ⅱ)-triphenylamine based metal-organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2078-2086. doi: 10.11862/CJIC.20250167

    17. [17]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    18. [18]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    19. [19]

      Xiangyu CHENZhenzhen MIAOLigang XUGuangbao WUZhuang LIUWenzhen LÜRunfeng CHEN . Research progress on low-dimensional organic-inorganic hybrid metal halide optoelectronic materials. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2201-2217. doi: 10.11862/CJIC.20250056

    20. [20]

      Xingchao ZhaoXiaoming LiMing LiuZijin ZhaoKaixuan YangPengtian LiuHaolan ZhangJintai LiXiaoling MaQi YaoYanming SunFujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021

Metrics
  • PDF Downloads(10)
  • Abstract views(1095)
  • HTML views(233)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return