Citation: GONG Shao-Hua,  PAN Wei,  LI Na,  TANG Bo. Progress of Portable Biosensors for Quantitative Detection of Cancer Biomarkers[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(11): 1599-1612. doi: 10.19756/j.issn.0253-3820.210507 shu

Progress of Portable Biosensors for Quantitative Detection of Cancer Biomarkers

  • Corresponding author: LI Na, lina@sdnu.edu.cn
  • Received Date: 17 May 2021
    Revised Date: 23 November 2021

    Fund Project: Supported by the National Natural Science Foundation of China (Nos.21874086, 21775094) and the Youth Innovation Science and Technology Program of Higher Education Institution of Shandong Province, China (No.2019KJC022).

  • Accurate detection of cancer biomarkers plays a significant role in early diagnosis of cancer and improving the survival rate of cancer patients. Liquid biopsy can non-invasively and repeatedly detect cancer biomarkers in human body fluid and holds great promise for early diagnosis of cancer. Liquid biopsy based on simple signal output can obtain detection result via simple operation and thus hopefully realizing on-site detection, showing great potential in early screening, prognosis and monitoring of therapeutic effect of cancer. In this review, we focused on the recent advances of portable and quantitative detection of cancer biomarkers and summarized the detection strategies based on portable pressure meter, volumetric bar-chart chip, personal glucose meter, thermal meter, pH meter and digital multimeter. In addition, the perspectives and challenges in this field were also discussed.
  • 加载中
    1. [1]

      SIEGEL R L, MILLER K D, JEMAL A. CA Cancer J. Clin., 2019, 69(1):7-34.

    2. [2]

      WANG K Y, XIANG Y N, PAN W, WANG H Y, LI N, TANG B. Chem. Sci., 2020, 11(31):8055-8072.

    3. [3]

      LI N, CHANG C C, PAN W, TANG B. Angew. Chem., Int. Ed., 2012, 51(30):7426-7430.

    4. [4]

      CHEN X D, GOLE J, GORE A, HE Q Y, LU M, MIN J, YUAN Z Y, YANG X R, JIANG Y F, ZHANG T J, SUO C, LI X J, CHENG L, ZHANG Z H, NIU H Y, LI Z, XIE Z, SHI H, ZHANG X, FAN M, WANG X F, YANG Y J, DANG J, MCCONNELL C, ZHANG J, WANG J C, YU S Z, YE W M, GAO Y, ZHANG K, LIU R, JIN L. Nat. Commun., 2020, 11(1):3475.

    5. [5]

      CHAFFER C L, WEINBERG R A. Science, 2011, 331(6024):1559-1564.

    6. [6]

      NIU L M, SONG X G, WANG N, XUE L L, SONG X R, XIE L. Cancer Sci., 2019, 110(1):433-442.

    7. [7]

      BACH P B, MIRKIN J N, OLIVER T K, AZZOLI C G, BERRY D A, BRAWLEY O W, BYERS T, COLDITZ G A, GOULD M K, JETT J R, SABICHI A L, SMITH-BINDMAN R, WOOD D E, QASEEM A, DETTERBECK F C. JAMA, J. Am. Med. Assoc., 2012, 307(22):2418-2429.

    8. [8]

      HEITZER E, PERAKIS S, GEIGL J B, SPEICHER M R. NPJ Precis. Oncol., 2017, 1(1):36.

    9. [9]

      LU J, HAN B H. Technol. Cancer Res. Treat., 2018, 17:1-7.

    10. [10]

      WU L, QU X G. Chem. Soc. Rev., 2015, 44(10):2963-2997.

    11. [11]

      LIU C C, XU X N, LI B, SITU B, PAN W L, HU Y, AN T X, YAO S H, ZHENG L. Nano Lett., 2018, 18(7):4226-4232.

    12. [12]

      CHI X W, YANG P W, ZHANG E H, GU J Y, XU H, LI M W, GAO X M, LI X, ZHANG Y N, XU H M, HU J L. Cancer Med., 2019, 8(10):4753-4765.

    13. [13]

      GONG S H, ZHANG S Q, LU F, PAN W, LI N, TANG B. Anal. Chem., 2021, 93(35):11899-11909.

    14. [14]

      HOLZINGER A, ABKEN H. Cancer Immunol. Immunother., 2017, 66(11):1505-1507.

    15. [15]

    16. [16]

      PANTEL K, ALIX-PANABIERES C. Clin. Chem., 2013, 59(1):110-118.

    17. [17]

      VAN DER POL Y, MOULIERE F. Cancer Cell, 2019, 36(4):350-368.

    18. [18]

      KLUTSTEIN M, NEJMAN D, GREENFIELD R, CEDAR H. Cancer Res., 2016, 76(12):3446-3450.

    19. [19]

      DIEHL F, SCHMIDT K, CHOTI M A, ROMANS K, GOODMAN S, LI M, THORNTON K, AGRAWAL N, SOKOLL L, SZABO S A, KINZLER K W, VOGELSTEIN B, DIAZ L A. Nat. Med., 2008, 14(9):985-990.

    20. [20]

      BETTEGOWDA C, SAUSEN M, LEARY R J, KINDE I, WANG Y X, AGRAWAL N, BARTLETT B R, WANG H, LUBER B, ALANI R M, ANTONARAKIS E S, AZAD N S, BARDELLI A, BREM H, CAMERON J L, LEE C C, FECHER L A, GALLIA G L, GIBBS P, LE D, GIUNTOLI R L, GOGGINS M, HOGARTY M D, HOLDHOFF M, HONG S M, JIAO Y C, JUHL H H, KIM J J, SIRAVEGNA G, LAHERU D A, LAURICELLA C, LIM M, LIPSON E J, MARIE S KAZUE N, NETTO G J, OLINER K S, OLIVI A, OLSSON L, RIGGINS G J, SARTORE-BIANCHI A, SCHMIDT K, SHIH L M, OBA-SHINJO S M, SIENA S, THEODORESCU D, TIE J, HARKINS T T, VERONESE S, WANG T L, WEINGART J D, WOLFGANG C L, WOOD L D, XING D, HRUBAN R H, WU J, ALLEN P J, SCHMIDT C M, CHOTI M A, VELCULESCU V E, KINZLER K W, VOGELSTEIN B, PAPADOPOULOS N, DIAZ L A. Sci. Transl. Med., 2014, 6(224):224ra24.

    21. [21]

      WEBER B, MELDGAARD P, HAGER H, WU L, WEI W, TSAI J L, KHALIL A, NEXO E, SORENSEN B S. BMC Cancer, 2014, 14(1):294.

    22. [22]

      ZHAO Y X, ZUO X L, LI Q, CHEN F, CHEN Y R, DENG J Q, HAN D, HAO C L, HUANG F J, HUANG Y Y, KE G L, KUANG H, LI F, LI J, LI M, LI N, LIN Z Y, LIU D B, LIU J W, LIU L B, LIU X G, LU C H, LUO F, MAO X H, SUN J S, TANG B, WANG F, WANG J B, WANG L H, WANG S, WU L L, WU Z S, XIA F, XU C L, YANG Y, YUAN B F, YUAN Q, ZHANG C, ZHU Z, YANG C Y, ZHANG X B, YANG H H, TAN W H, FAN C H. Sci. China Chem., 2020, 64(2):1-33.

    23. [23]

      EICHHORN S W, GUO H, MCGEARY S E, RODRIGUEZ-MIAS R A, SHIN C, BAEK D, HSU S H, GHOSHAL K, VILLEN J, BARTEL D P. Mol. Cell, 2014, 56(1):104-115.

    24. [24]

      YING L S, DU L B, ZOU R Y, SHI L, ZHANG N, JIN J Y, XU C Y, ZHANG F R, ZHU C, WU J Z, CHEN K Y, HUANG M R, WU Y X, ZHANG Y M, ZHENG W H, PAN X D, CHEN B F, LIN A F, TAM J K C, VAN DAM R M, LAI D T M, CHIA K S, ZHOU L H, TOO H P, YU H, MAO W M, SU D. Proc. Natl. Acad. Sci. U.S.A., 2020, 117(40):25036-25042.

    25. [25]

      MILANE L, SINGH A, MATTHEOLABAKIS G, SURESH M, AMIJI M M. J. Controlled Release, 2015, 219:278-294.

    26. [26]

      ZHAO Z, YANG Y, ZENG Y, HE M. Lab Chip, 2016, 16(3):489-496.

    27. [27]

      ZHOU P, LU F, WANG J B, WANG K Y, LIU B, LI N, TANG B. Chem. Commun., 2020, 56(63):8968-8971.

    28. [28]

      YIN J X, DENG J Q, WANG L, DU C, ZHANG W, JIANG X Y. Anal. Chem., 2020, 92(10):6968-6976.

    29. [29]

      LIN J, ZHENG J P, WU A G. J. Mater. Chem. B, 2020, 8(16):3316-3326.

    30. [30]

      WU C C, LI P, FAN N N, HAN J J, ZHANG W, ZHANG W, TANG B. ACS Appl. Mater. Interfaces, 2019, 11(48):44999-45006.

    31. [31]

      LI X R, ZHOU Y G. Electrochem. Commun., 2021, 124:106949.

    32. [32]

      ZHANG Y Y, LU H T, YANG F, CHENG Y R, DAI W H, MENG X D, DONG H F, ZHANG X J. Anal. Chim. Acta, 2020, 1139:164-168.

    33. [33]

      CHEN D, WU Y, HOQUE S, TILLEY R D, GOODING J J. Chem. Sci., 2021, 12(14):5196-5201.

    34. [34]

    35. [35]

      MAHMOUDI T, DE LA GUARDIA M, BARADARAN B. TrAC, Trend. Anal. Chem., 2020, 125:115842.

    36. [36]

      DING E L, HAI J, LI T R, WU J, CHEN F J, WEN Y, WANG B D, LU X Q. Anal. Chem., 2017, 89(15):8140-8147.

    37. [37]

      HU S Q, TONG L J, WANG J X, YI X Y, LIU J W. Anal. Chem., 2019, 91(24):15418-15424.

    38. [38]

      LIU X L, WANG Y P, GAO Y F, SONG Y J. Analyst, 2021, 146(4):1115-1126.

    39. [39]

      ZHU Z, GUAN Z C, LIU D, JIA S S, LI J X, LEI Z C, LIN S C, JI T H, TIAN Z Q, YANG C Y J. Angew. Chem., Int. Ed., 2015, 54(36):10448-10453.

    40. [40]

      HUANG D, LIN B Q, SONG Y L, GUAN Z C, CHENG J, ZHU Z, YANG C Y. ACS Appl. Mater. Interfaces, 2019, 11(2):1800-1806.

    41. [41]

      CATALONA W J, SMITH D S, RATLIFF T L, DODDS K M, COPLEN D E, YUAN J J J, PETROS J A, ANDRIOLE G L. New Engl. J. Med., 1991, 324(17):1156-1161.

    42. [42]

      SHI L, LEI J, ZHANG B, LI B X, YANG C Y J, JIN Y. ACS Appl. Mater. Interfaces, 2018, 10(15):12526-12533.

    43. [43]

      DING E L, HAI J, CHEN F J, WANG B D. ACS Appl. Nano Mater., 2018, 1(8):4156-4163.

    44. [44]

      WANG Z Y, HAI J, LI T R, DING E L, HE J X, WANG B D. ACS Sustain. Chem. Eng., 2018, 6(8):9921-9929.

    45. [45]

      SONG Y J, XIA X F, WU X F, WANG P, QIN L D. Angew. Chem., Int. Ed., 2014, 53(46):12451-12455.

    46. [46]

      LI Y, XUAN J, SONG Y J, QI W J, HE B S, WANG P, QIN L D. ACS Nano, 2016, 10(1):1640-1647.

    47. [47]

      SHAO N, HAN X, SONG Y N, ZHANG P C, QIN L D. Anal. Chem., 2019, 91(19):12384-12391.

    48. [48]

      YANG J J, PAN B, ZENG F, HE B S, GAO Y F, LIU X L, SONG Y J. Nano Lett., 2021, 21(5):2001-2009.

    49. [49]

      XIANG Y, LU Y. Anal. Chem., 2012, 84(9):4174-4178.

    50. [50]

      GONG S H, CHEN Y Y, PAN W, LI N, TANG B. Chem. Commun., 2020, 56(62):8850-8853.

    51. [51]

      YANG X S, SHI D M, ZHU S M, WANG B J, ZHANG X J, WANG G F. ACS Sens., 2018, 3(7):1368-1375.

    52. [52]

      ZHU X, XU H F, LIN R L, YANG G D, LIN Z Y, CHEN G N. Chem. Commun., 2014, 50(58):7897-7899.

    53. [53]

      GE L L, LI B, XU H X, PU W Y, KWOK H F. Biosens. Bioelectron., 2019, 132:210-216.

    54. [54]

      HUN X, XU Y Q, LUO X L. Microchim. Acta, 2015, 182:1669-1675.

    55. [55]

      WU T T, YANG Y M, CAO Y, SONG Y C, XU L P, ZHANG X J, WANG S T. ACS Appl. Mater. Interfaces, 2018, 10(49):42050-42057.

    56. [56]

      WU T T, CAO Y, YANG Y M, ZHANG X Y, WANG S T, XU L P, ZHANG X J. Nanoscale, 2019, 11(23):11279-11284.

    57. [57]

      GONG S H, LI J J, PAN W, LI N, TANG B. Anal. Chem., 2021, 93(30):10719-10726.

    58. [58]

      SI Y M, LI L L, WANG N N, ZHENG J J, YANG R H, LI J S. ACS Appl. Mater. Interfaces, 2019, 11(8):7792-7799.

    59. [59]

      XUE Q W, KONG Y C, WANG H S, JIANG W. Chem. Commun., 2017, 53(78):10772-10775.

    60. [60]

      GU Y, ZHANG T T, HUANG Z F, HU S W, ZHAO W, XU J J, CHEN H Y. Chem. Sci., 2018, 9(14):3517-3522.

    61. [61]

      YANG J M, HUANG X T, GAN C F, YUAN R, XIANG Y. Biosens. Bioelectron., 2019, 143:111604.

    62. [62]

      FU G L, SANJAY S T, DOU M W, LI X J. Nanoscale, 2016, 8(10):5422-5427.

    63. [63]

      WEI Y Y, WANG D N, ZHANG Y Z, SUI J H, XU Z R. Biosens. Bioelectron., 2019, 140:111345.

    64. [64]

      HAN X L, LIN S J, LI Y, CHENG C, HAN X. Anal. Chim. Acta, 2020, 1098:117-124.

    65. [65]

      FU G L, SANJAY S T, ZHOU W, BREKKEN R A, KIRKEN R A, LI X J. Anal. Chem., 2018, 90(9):5930-5937.

    66. [66]

      ZHANG B, JIA Y J, WANG J, CHANG H H, ZHAO Z H, CHENG Y. Process Biochem., 2019, 87:66-72.

    67. [67]

      LIU Y H, PAN M, WANG W X, JIANG Q Y, WANG F A, PANG D W, LIU X Q. Anal. Chem., 2019, 91(3):2086-2092.

    68. [68]

      ZHANG B, HU X, JIA Y J, LI J, ZHAO Z H. Microchim. Acta, 2021, 188(3):63.

    69. [69]

      MA X M, WANG Z, HE S, CHEN C Q, LUO F, GUO L H, QIU B, LIN Z Y, CHEN G N, HONG G L. ACS Sens., 2019, 4(9):2375-2380.

    70. [70]

      ZHANG Y, YANG J N, NIE J F, YANG J H, GAO D, ZHANG L, LI J P. Chem. Commun., 2016, 52(17):3474-3477.

    71. [71]

      TSE E, LOBATO M N, FORSTER A, TANAKA T, CHUNG G T Y, RABBITTS T H. J. Mol. Biol., 2002, 317(1):85-94.

    72. [72]

      JIANG Y, SU Z Y, ZHANG J, CAI M J, WU L L. Analyst, 2018, 143(21):5271-5277.

    73. [73]

      CHEN J C, XUE H F, CHEN Q Y, LIN Y, TANG D P, ZHENG J W. Chin. Chem. Lett., 2019, 30(9):1631-1634.

    74. [74]

      TANG D P, ZHANG B, LIU B Q, CHEN G N, LU M H. Biosens. Bioelectron., 2014, 55:255-258.

    75. [75]

      YU Z Z, TANG Y, CAI G N, REN R R, TANG D P. Anal. Chem., 2019, 91(2):1222-1226.

    76. [76]

      YU Z Z, CAI G N, LIU X L, TANG D P. ACS Appl. Mater. Interfaces, 2020, 12(36):40133-40140.

    77. [77]

      YU Z Z, CAI G N, TONG P, TANG D P. ACS Sens., 2019, 4(9):2272-2276.

    78. [78]

      HUANG L T, YU Z H, CHEN J L, TANG D P. ACS Appl. Bio Mater., 2020, 3(12):9156-9163.

  • 加载中
    1. [1]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-0. doi: 10.3866/PKU.WHXB202310046

    2. [2]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    3. [3]

      Ke ZhaoZhen LiuLuyao LiuChangyuan YuJingshun PanXuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029

    4. [4]

      Xingchao ZhaoXiaoming LiMing LiuZijin ZhaoKaixuan YangPengtian LiuHaolan ZhangJintai LiXiaoling MaQi YaoYanming SunFujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021

    5. [5]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    6. [6]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    7. [7]

      Cun WANGShaohan XUYuqian ZHANGYaoyao ZHANGTao GONGRong WENYuhang LIAOYanrong REN . Terbium complex electrochemiluminescent emitters: Synthesis and application in the detection of epinephrine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1351-1360. doi: 10.11862/CJIC.20240427

    8. [8]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    9. [9]

      Lin′an CAODengyue MAGang XU . Research advances in electrically conductive metal-organic frameworks-based electrochemical sensors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1953-1972. doi: 10.11862/CJIC.20250160

    10. [10]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    11. [11]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    12. [12]

      Tongyu Zheng Teng Li Xiaoyu Han Yupei Chai Kexin Zhao Quan Liu Xiaohui Ji . A DIY pH Detection Agent Using Persimmon Extract for Acid-Base Discoloration Popularization Experiment. University Chemistry, 2024, 39(5): 27-36. doi: 10.3866/PKU.DXHX202309107

    13. [13]

      Jia-He Li Yu-Ze Liu Jia-Hui Ma Qing-Xiao Tong Jian-Ji Zhong Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080

    14. [14]

      Hongyan Feng Mingli Gao Chenxiao Jiang Liang Wu Yaoming Wang . Integrating Science and Education to Develop a Series of Teaching Equipment for Chemical Engineering Experiments. University Chemistry, 2025, 40(11): 249-253. doi: 10.12461/PKU.DXHX202412004

    15. [15]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    16. [16]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    17. [17]

      Ying Liu Lingjie Sun Fangxu Yang Shanshan Cheng Xiaotao Zhang . 教育部重点实验室大型仪器设备平台的建设与管理. University Chemistry, 2025, 40(6): 215-221. doi: 10.12461/PKU.DXHX202407077

    18. [18]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    19. [19]

      Xue-Peng Zhang Yuchi Long Yushu Pan Jiding Wang Baoyu Bai Rui Ding . 定量构效关系方法学习探索:以钴卟啉活化氧气为例. University Chemistry, 2025, 40(8): 345-359. doi: 10.12461/PKU.DXHX202410107

    20. [20]

      Lisen Sun Yongmei Hao Zhen Huang Yongmei Liu . Experimental Teaching Design for Viscosity Measurement Serves the Optimization of Operating Conditions for Kitchen Waste Treatment Equipment. University Chemistry, 2024, 39(2): 52-56. doi: 10.3866/PKU.DXHX202307063

Metrics
  • PDF Downloads(14)
  • Abstract views(1097)
  • HTML views(47)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return