Citation: ZHANG Ben-Hua,  LIANG Ting-Xi-Zi,  HE Zhi-Mei,  JIANG Yao-Wen,  HUANG Shan,  MIN Qian-Hao. Zinc Peroxide-Mesoporous Silica Core-Shell Dual-Enzyme Nanoreactors for Gene-Chemodynamic Synergistic Therapy of Cancer[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(11): 1855-1863. doi: 10.19756/j.issn.0253-3820.210506 shu

Zinc Peroxide-Mesoporous Silica Core-Shell Dual-Enzyme Nanoreactors for Gene-Chemodynamic Synergistic Therapy of Cancer

  • Corresponding author: MIN Qian-Hao, minqianhao@nju.edu.cn
  • Received Date: 12 May 2021
    Revised Date: 11 August 2021

    Fund Project: Supported by the National Natural Science Foundation of China (Nos.21974062, 92053102).

  • Stimuli-responsiveness of nanoreactors offers a good opportunity for designing site-specific therapeutic agents to maximize the therapeutic efficacy and minimize the side effect. In this work, a dual-enzyme reactor with zinc peroxide-mesoporous silica core-shell structure was constructed for pH-responsive gene therapy and chemodynamic therapy of cancer. The ZnO2@FcDMSN@DNAzyme/GOx (ZFDG) nanoreactors were fabricated by modifying ferrocene (Fc) on the surface of mesoporous silica-coated zinc peroxide nanoparticles, followed by electrostatic adsorption of DNAzyme and glucose oxidase (GOx) in the outer pore structures. After internalization into tumor cells, intracellular acidic environment spurred the release of Zn2+ to activate DNAzyme, leading to the cleavage of the target mRNA for downregulation of early growth factor-1 (EGR-1) and consequent inhibition of tumor cell growth. In addition, GOx could transform abundant intracellular glucose into gluconic acid and hydrogen peroxide (H2O2), which increased the acidity in cells and provided massive substrates for Fenton reaction. The results showed that the presented ZFDG nanoreactors could be degraded under acidic environment and produced Zn2+, which further triggered gene therapy to reduce cell viability down to 70%. Upon combination with enhanced chemodynamic therapy, the cell survival rate could be further lowered to 20% when the concentration of nanoreactor was 50 μg/mL. Therefore, the collaboration of precisely triggered gene therapy and enhanced chemodynamic therapy synchronously improved the treatment efficiency and provided a potential tool for effective cancer therapy.
  • 加载中
    1. [1]

      ROSENTHAL S A, HU C, SARTOR O, GOMELLA L G, AMIN M B, PURDY J, MICHALSKI J M, GARZOTTO M G, PERVEZ N, BALOGH A G, RODRIGUES G B, SOUHAMI L, REAUME M N, WILLIAMS S G, HANNAN R, HORWITZ E M, RABEN A, PETERS C A, FENG F Y, SHIPLEY W U, SANDLER H M. J. Clin. Oncol., 2019, 37(14):1159-1167.

    2. [2]

      HECK M M, TAUBER R, CHWAIGER S S, RETZ M, ALESSANDRIA C D, MAURER T, AFITA A G, WESTER H J, GSCHWEND J E, WWBER W A, SCHWAIGER M, KNORR K, EIBER M. Eur. Urol., 2019, 75(6):920-926.

    3. [3]

      TOLANEY S M, WARDLEY A M, ZAMBELLI S, HILTON J F, TROSO-SANDOVAL T A, RICCI F, IM S A, KIM S B, JOHNSTON S R D, CHAN A, GOEL S, CATRON K, CHAPMAN S C, PRICE G L, YANG Z, GAINFORD M C, ANDRE F. Lancet Oncol., 2020, 21(6):763-775.

    4. [4]

      MACEWAN S R, CHIKOTI A. Angew. Chem., Int. Ed., 2017, 56(24):6712-6733.

    5. [5]

      DING Y, WAN J, ZHANG Z, WANG F, GUO J, WANG C. ACS Appl. Mater. Interfaces, 2018, 10(5):4439-4449.

    6. [6]

      RANJI-BURACHALO O, GURR P A, DUNSTAN D E, QIAO G. ACS Nano, 2018, 12(12):11819-11837.

    7. [7]

      SUN B, LI H, LI X, LIU X, ZHANG C, XU H, ZHAN X S. Ind. Eng. Chem. Res., 2018, 57(42):14011-14021.

    8. [8]

      BUTTERFIELD J S S, HEGE K M, HERZOG R W, KACZMAREK R. Mol. Ther., 2020, 28(4):997-1015.

    9. [9]

      FORD K, HANLEY C J, MELLONE M, SZYNDRALEWIEZ C, HEITZ F, WIESEL P, WOOD O, MACHADO M, LOPEZ M A, GANESAN A P, WANG C, CHAKRAVARTHY A, FENTON T R, KING E V, VIJAYANAND P, OTTENSMEIER C H, AL-SHAMKHANI A, SAVELYEVA N, THOMAS G J. Cancer Res., 2020, 80(9):1846-1860.

    10. [10]

      FAN H, ZHAO Z, YAN G, ZHANG X, YANG C, MENG H, CHEN Z, LIU H, TAN W. Angew. Chem., Int. Ed., 2015, 54(16):4801-4805.

    11. [11]

      YU L, CHEN Y, LIN H, GAO S, CHEN H, SHI J. Small, 2018, 14(35):1613-6810.

    12. [12]

      WANG H, CHEN Y, WANG H, LIU X, ZHOU X, WANG F. Angew. Chem., Int. Ed., 2019, 58:7380-7384.

    13. [13]

      ELAHY M, DASS C R. Chem. Biol. Drug Des., 2011, 78(6):909-912.

    14. [14]

      FAHMY R G, WALDMAN A, ZHANG G, MITCHELL A, TEDLA N, CAI H, GECZY C R, CHESTERMAN C N, PERRY M, KHACHIGIANL M. Nat. Biotechnol., 2006, 24(7):856-863.

    15. [15]

      FAN H, ZHANG X, LU Y. Sci. China Chem., 2017, 60(5):591-601.

    16. [16]

      ZHOU W, DING J, LIU J. Theranostics, 2017, 7(4):1010-1025.

    17. [17]

      KHACHIGIAN L M. Cancer Res., 2019, 79(5):879-888.

    18. [18]

      LIN L, WANG J, SONG J, LIU Y, ZHU G, DAI Y, SHEN Z, TIAN R, SONG J, WANG Z, TANG W, YU G, ZHOU Z, YANG Z, HUANG T, NIU G, YANG H H, CHEN Z Y, CHEN X. Theranostics, 2019, 9(24):7200-7209.

    19. [19]

      ZHENG F, WANG C, MENG T, ZHANG Y, ZHANG P, SHEN Q, ZHANG Y, ZHANG J, LI J, MIN Q, CHEN J, ZHU J. ACS Nano, 2019, 13(11):12577-12590.

    20. [20]

      YANG Y, LU Y, ABBRARAJU P L, AZIMI I, LEI C, TANG J, JAMBHRUNKAR M, FU J, ZHANG M, LIU Y, LIU C, YU C. Adv. Funct. Mater., 2018, 28(28):1800706.

  • 加载中
    1. [1]

      Weijie Yang Mansheng Chen Chen Xu Fujian Xu . Hydroxyl-Rich Polycations: Innovative Materials Empowering Life and Health. University Chemistry, 2025, 40(9): 332-343. doi: 10.12461/PKU.DXHX202410072

    2. [2]

      Ruifeng CHENChao XUJianting JIANGTianshe YANG . Gold nanorod/zinc oxide/mesoporous silica nanoplatform: A triple-modal platform for synergistic anticancer therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2272-2282. doi: 10.11862/CJIC.20250117

    3. [3]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    4. [4]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    5. [5]

      Shiyang HeDandan ChuZhixin PangYuhang DuJiayi WangYuhong ChenYumeng SuJianhua QinXiangrong PanZhan ZhouJingguo LiLufang MaChaoliang Tan . Pt Single-Atom-Functionalized 2D Al-TCPP MOF Nanosheets for Enhanced Photodynamic Antimicrobial Therapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-0. doi: 10.1016/j.actphy.2025.100046

    6. [6]

      Tiejin ChenXiaokuang XueJian LiMinhui CuiYongliang HaoMianqi XueHaihua XiaoJiechao GePengfei Wang . Membrane-anchoring nanoengineered carbon dots as a pyroptosis amplifier for robust tumor photodynamic-immunotherapy. Acta Physico-Chimica Sinica, 2025, 41(10): 100113-0. doi: 10.1016/j.actphy.2025.100113

    7. [7]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    8. [8]

      Xue WuYupeng LiuBingzhe WangLingyun LiZhenjian LiQingcheng WangQuansheng ChengGuichuan XingSongnan Qu . Rationally assembling different surface functionalized carbon dots for enhanced near-infrared tumor photothermal therapy. Acta Physico-Chimica Sinica, 2025, 41(9): 100109-0. doi: 10.1016/j.actphy.2025.100109

    9. [9]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    10. [10]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    11. [11]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    12. [12]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    13. [13]

      Fa Wang Yu Chen Hui Chao . Ruthenium(II) Complexes as Photoactivated Chemo-Prodrugs for Hypoxic Tumor Therapy. University Chemistry, 2025, 40(7): 200-212. doi: 10.12461/PKU.DXHX202410024

    14. [14]

      Bin SUNHeyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428

    15. [15]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    16. [16]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    17. [17]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    18. [18]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    19. [19]

      Ying Zhang Fang Ge Zhimin Luo . AI-Driven Biochemical Teaching Research: Predicting the Functional Effects of Gene Mutations. University Chemistry, 2025, 40(3): 277-284. doi: 10.12461/PKU.DXHX202412104

    20. [20]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

Metrics
  • PDF Downloads(9)
  • Abstract views(1356)
  • HTML views(279)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return