Citation:
QIN Ying-Kai, LI Shuang, HONG Yang, WANG Zhi-Guang, JI Guang-Na, CHEN Rui-Peng, ZHAO Xu-Dong, WANG Yu, REN Shu-Yue, HAN Dian-Peng, PENG Yuan, ZHOU Huan-Ying, GAO Zhi-Xian, HAN Tie. Research Process of Synthesis, Functionalization and Application of Upconversion Nanoparticles in Food Safety Detection[J]. Chinese Journal of Analytical Chemistry,
;2021, 49(12): 1955-1969.
doi:
10.19756/j.issn.0253-3820.210487
-
Upconversion nanoparticles (UCNPs) can convert low-energy excitation into high-energy emission via multiphoton absorption processes. UCNPs have some unique photophysical properties including large anti-Stokes shift, strong penetration into biological tissues, resistance to photobleaching, low background fluorescence, great chemical stability and low toxicity, therefore, they draw great attention and provide a variety of possibilities for sensing detection, bioimaging, and bioanalysis, and promoting the development of fluorescently labeled probes. In this review, the synthesis methods and surface functionalization strategies of UCNPs were summarized, also the recent progress of UCNPs on food safety detection was reviewed. Finally, the challenges faced by UCNPs and the opportunities for future development were discussed.
-
Keywords:
- Upconversion nanoparticles,
- Synthesis,
- Functionalization,
- Food safety,
- Review
-
-
-
[1]
YANG X Y, WANG D Y, SHI Y H, ZOU J H, ZHAO Q S, ZHANG Q, HUANG W, SHAO J J, XIE X J,DONG X C. ACS Appl. Mater. Interfaces, 2018, 10(15):12431-12440.
-
[2]
WEIBEI S. Phys. Rev. Lett., 1959, 2:83-84.
-
[3]
AUZEL F. Proc. IEEE, 1973, 61:758-786.
-
[4]
HAASE M, SCHAFER H. Angew. Chem., Int. Ed., 2011, 50(26):5808-5829.
-
[5]
ZHANG F, SHI Q H, ZHANG Y C, SHI Y F, DING K L, ZHAO D Y, STUCKY G D. Adv. Mater., 2011, 23:3775-3779.
-
[6]
CHIVIAN J S, CASE W E, EDEN D D. Appl. Phys. Lett., 1979, 35(2):124.
-
[7]
CHANG Y R, LEE H Y, CHEN K, CHANG C C, TSAI D S, FU C C, LIM T S, TZENG Y K, FANG C Y, HAN C C, CHANG H C, FANN W. Nat. Nanotechnol., 2008, 3:284-288.
-
[8]
YANG D M, DAI Y L, MA P A, KANG X J, CHENG Z Y, LI C X, LIN J. Chem.-Eur. J., 2013, 19(8):2685-2694.
-
[9]
LAIHINEN T, LASTUSAARI M, PIHLGREN L, RODRIGUES L C V, HOLSA J. J. Therm. Anal. Calorim., 2015, 121(1):37-43.
-
[10]
CHANG H J, XIE J, ZHAO B Z, LIU B T, XU S L, REN N, XIE X J, HUANG L, HUANG W. Nanomaterials, 2015, 5(1):1-25.
-
[11]
RADUNZ S, SCHAVKAN A, WAHL S, WUERTH C, TSCHICHE H, KRURNREY M, RESCH-GENGER U. J. Phys. Chem. C, 2018, 122(50):28958-28967.
-
[12]
SKRIPKA A, MARIN R, BENAYAS A, CANTON P, HEMMER E, VETRONE F. Phys. Chem. Chem. Phys, 2017, 7(70):44531-44536.
-
[13]
LI Y, DONG Y, AIDILIBIKE T, LIU X, GUO J, QIN W. RSC Adv., 2017, 7(70):44531-44536.
-
[14]
DONG J, ZHANG J, HAN Q, ZHAO X, YAN X, LIU J, GE H, GAO W. J. Lumin., 2019, 207:361-368.
-
[15]
MAI H X, ZHANG Y W, SUN L D, YAN C H. J. Phys. Chem. C, 2007, 111(37):13730-13739.
-
[16]
PANIKAR S S, RAMIIREZ-GARCIA G, VALLEJO-CARDONA A A, BANU N, PATRON-SOBERANO O A, CIALLA-MAY D, CAMACHO-VILLEGAS T A, ROSA E D L. Nanoscale, 2019, 11(43):20598-20613.
-
[17]
SUN L L, WANG T, SUN Y Z, LI Z X, SONG H N, ZHANG B, ZHOU G J, ZHOU H F, HU J F. Talanta, 2020,207:120294.
-
[18]
LI Z Q, ZHANG Y. Nanotechnology, 2008, 19:345606.
-
[19]
ZHU J, AGYEKUM A A, KUTSANEDZIE F Y H, LI H, CHEN Q, OUYANG Q, JIANG H. LWT-Food Sci. Technol., 2018, 97:760-769.
-
[20]
WANG X, ZHUANG J, PENG Q, LI Y D. Nature, 2005, 437(7055):121-124.
-
[21]
FENG Y, CHEN H D, MA L, SHAO B Q, ZHAO S, WANG Z X, YOU H P. ACS Appl. Mater. Interfaces, 2017, 9(17):15096-15102.
-
[22]
KACZOROWSKA N, SZCZESZAK A, LIS S. J. Lumin., 2018, 200:59-65.
-
[23]
SASIDHARAN S L, NIAGARA M I, LI Z Q, HUANG K, SOO K C, ZHANG Y. ACS Nano, 2015, 9(1):191-205.
-
[24]
RONG J M, LI P C, GE Y K, CHEN H L, WU J, ZHANG R W, LAO J, LOU D W, ZHANG Y X. Colloids Surf., B, 2020, 186:110674.
-
[25]
CHHETRI B P, KARMAKAR A, GHOSH A. Part. Part. Syst. Charact., 2019, 36(8):1900153.
-
[26]
HAN S Y, QIN X, AN Z F, ZHU Y H, LIANG L L, HAN Y, HUANG W, LIU X G. Nat. Commun., 2016, 7:13059.
-
[27]
BOGDAN N, RODRIGUEZ E M, SANZ-RODRIGUEZ F, DE LA CRUZ M C I, JUARRANZ A, JAQUE D, SOLE J G, CAPOBIANCO J A. Nanoscale, 2012, 4(12):3647-3650.
-
[28]
XIE X H, SONG J L, HU L Y, ZHANG S Y, WANG Y T, ZHAO Y L, LU Q. Int. J. Nanomed., 2018, 13:7633-7646.
-
[29]
WANG F F, ZHANG C L, QU X T, CHENG S S, XIAN Y Z. Biosens. Bioelectron., 2019, 126:96-101.
-
[30]
YANG H, CHEN X N, WU J S, WANG R Y, YANG H P. Sens. Actuators, B, 2019, 290:656-665.
-
[31]
XU S, XU S H, ZHU Y S, XU W, ZHOU P W, ZHOU C Y, DONG B, SONG H W. Nanoscale, 2014, 6(21):12573-12579.
-
[32]
LUO Z B, QI Q G, ZHANG L J, LUO Z B, QI Q A, ZHANG L J, ZENG R J, SU L S, TANG D P. Anal. Chem., 2019, 91(6):4149-4156.
-
[33]
ALONSO-CRISTOBAL P, VILELA P, EI-SAGHEER A, BROWN T, MUSKENS O L, RUBIO-RETAMA J, KANARAS A G. ACS Appl. Mater. Interfaces, 2015, 7(23):12422-12429.
-
[34]
GIUST D, LUCIO M I, EL-SAGHEER A H, BROWN T, WILLIAMS L E, MUSKENS O L, KANARAS A G. ACS Nano, 2018, 12(6):6273-6279.
-
[35]
GUO Y, ZOU R, SI F, LIANG W, ZHANG T, CHANG Y, QIAO X, ZHAO J. Food Chem., 2021, 335:127609.
-
[36]
TANG Y, LIU H, GAO J, LIU X, GAO X, LU X, FAN G G, WANG J, LI J. Talanta, 2018, 181:95-103.
-
[37]
CHEN H, PANG X, NI Z, LIU M, ZHANG Y, YAO S. Anal. Chim. Acta, 2020, 1095:146
-
[38]
LIU L, ZHANG H, WANG Z, SONG D. Biosens. Bioelectron., 2019, 141:111403.
-
[39]
CHAN M H, LAI C Y, CHAN Y C, HSIAO M, CHUNG R J, CHEN X, LIU R S. Nanomedicine, 2019, 14(14):1791-1804.
-
[40]
LIU J, LU L, LI A, TANG J, WANG S, XU S, WANG L. Biosens. Bioelectron., 2015, 68:204.
-
[41]
YUAN J, CEN Y, KONG X J, WU S, LIU C L, YU R Q, CHU X. ACS Appl. Mater. Interfaces, 2015, 7(19):10548-10555.
-
[42]
OUYANG Q, WANG L, AHMAD W, RONG Y, LI H, HU Y, CHEN Q. Food Chem., 2021, 349:129157.
-
[43]
XU Z, ZHANG L W, LONG L L, ZHU S H, CHEN M L, DING L, CHENG Y H. Front. Bioeng. Biotechnol., 2020, 8:626269.
-
[44]
LIU C, WANG Z, JIA H, LI Z. Chem. Commun., 2011, 47:4661-4663.
-
[45]
ZHANG L, YIN S, HOU J, ZHANG W, HUANG H, LI Y, YU C. Food Chem., 2019, 270:415-419.
-
[46]
LI J, ZHANG C, YIN M, ZHANG Z, CHEN Y, DENG Q, WANG S. ACS Omega, 2019, 4(14):15947-15955.
-
[47]
-
[48]
-
[49]
-
[50]
-
[51]
-
[52]
-
[53]
-
[54]
-
[55]
-
[56]
WANG P, LI H, HASSAN M M, GUO Z, ZHANG Z Z, CHEN Q. J. Agric. Food Chem., 2019, 67(14):4071-4079.
-
[57]
LIU M, ZHANG L, JIANG S, FU Z F. Microchem. J., 2020, 152:104451.
-
[58]
CHEN H, DING Y, YANG Q, BARNYCH B, GONZÁLEZ-SAPIENZA G, HAMMOCK B D, WANG M, HUA X. ACS Appl. Mater. Interfaces, 2019, 11(36):33380-33389.
-
[59]
-
[60]
HLAVACEK A, FARKA Z, HUBNER M, HORNAKOVA V, NEMECEK D, NIESSNER R, SKLADAL P, KNOPP D, GORRIS H H. Anal. Chem., 2016, 88(11):6011-6017.
-
[61]
WANG F, HAN Y, WANG S, YE Z, WEI L, XIAO L. Anal. Chem., 2019, 91(18):11856-11863.
-
[62]
WU Z, HE D, CUI B. Microchim. Acta, 2018, 185(11):516.
-
[63]
ZHAO X, WANG Y, LI J, HUO B, HUANG H, BAI J, PENG Y, LI S, HAN D, REN S, WANG J, GAO Z. Anal. Chim. Acta, 2021, 1160:338450.
-
[64]
YU J, GUO T, ZHANG W, LI B, LIU L, HUA R. J. Alloys Compd., 2019, 771:187-194.
-
[65]
SI F, ZOU R, JIAO S, QIAO X, GUO Y, ZHU G. Ecotoxicol. Environ. Saf., 2018, 148:862-868.
-
[66]
SUN N, DING Y, TAO Z, YOU H, HUA X, WANG M. Food Chem., 2018, 257:289-294.
-
[67]
LIU X, REN J, SU L, GAO X, TANG Y, MA T, ZHU L, LI J. Biomol. Spectrosc., 2017, 87:203-208.
-
[68]
HU G, SHENG W, LI J, ZHANG Y, WANG J, WANG S. Anal. Chim. Acta, 2017, 982:185-192.
-
[69]
-
[70]
WANG Y, ZHAO X D, ZHANG M, SUN X, BAI J, PENG Y, LI S, HAN D, REN S, WANG J, HAN T, GAO Y, NING B, GAO Z. J. Hazard. Mater., 2021, 406:124703.
-
[71]
LIN X, YU Q, YANG W, HE C, ZHOU Y, DUAN N, WU S. Food Chem., 2021, 345:128809.
-
[72]
RONG Y, ALI S, OUYANG Q, WANG L, LI H, CHEN Q. J. Food Compos. Anal., 2021, 1016:103929.
-
[73]
LI Y, LI Y, ZHANG D, TAN W, SHI J, LI Z, LIU H, YU Y, YANG L, WANG X, GONG Y, ZOU X. LWT-Food Sci. Technol., 2021, 1016:111541.
-
[1]
-
-
-
[1]
Jing WU , Puzhen HUI , Huilin ZHENG , Pingchuan YUAN , Chunfei WANG , Hui WANG , Xiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278
-
[2]
Xinting XIONG , Zhiqiang XIONG , Panlei XIAO , Xuliang NIE , Xiuying SONG , Xiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145
-
[3]
Wei Shao , Wanqun Zhang , Pingping Zhu , Wanqun Hu , Qiang Zhou , Weiwei Li , Kaiping Yang , Xisheng Wang . Design and Practice of Ideological and Political Cases in the Course of Instrument Analysis Experiment: Taking the GC-MS Experiment as an Example. University Chemistry, 2024, 39(2): 147-154. doi: 10.3866/PKU.DXHX202309048
-
[4]
Jiaming Xu , Yu Xiang , Weisheng Lin , Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093
-
[5]
Wenjie SHI , Fan LU , Mengwei CHEN , Jin WANG , Yingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360
-
[6]
Cunming Yu , Dongliang Tian , Jing Chen , Qinglin Yang , Kesong Liu , Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008
-
[7]
Shiyang He , Dandan Chu , Zhixin Pang , Yuhang Du , Jiayi Wang , Yuhong Chen , Yumeng Su , Jianhua Qin , Xiangrong Pan , Zhan Zhou , Jingguo Li , Lufang Ma , Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046
-
[8]
Zhuoya WANG , Le HE , Zhiquan LIN , Yingxi WANG , Ling LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194
-
[9]
Jinghan ZHANG , Guanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249
-
[10]
Yufang GAO , Nan HOU , Yaning LIANG , Ning LI , Yanting ZHANG , Zelong LI , Xiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036
-
[11]
. . Chinese Journal of Inorganic Chemistry, 2024, 40(11): 0-0.
-
[12]
Yunhao Zhang , Yinuo Wang , Siran Wang , Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083
-
[13]
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
-
[14]
Meiqing Yang , Lu Wang , Haozi Lu , Yaocheng Yang , Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046
-
[15]
Tiantian MA , Sumei LI , Chengyu ZHANG , Lu XU , Yiyan BAI , Yunlong FU , Wenjuan JI , Haiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351
-
[16]
Yang YANG , Pengcheng LI , Zhan SHU , Nengrong TU , Zonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440
-
[17]
Yinyin Qian , Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051
-
[18]
Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023
-
[19]
Dongxia Zhang , Sijia Hao , Jiarui Wang , Jiwei Wang , Xiaogang Dong , Liang Jiao . Construction and Reflection on the Safety Management of Hazardous Chemicals in University Laboratories. University Chemistry, 2024, 39(10): 229-235. doi: 10.12461/PKU.DXHX202403078
-
[20]
Guimin ZHANG , Wenjuan MA , Wenqiang DING , Zhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293
-
[1]
Metrics
- PDF Downloads(14)
- Abstract views(826)
- HTML views(142)