电喷雾离子化过程中蛋白质超多电荷离子生成方法研究进展

高晓梅 尹欣驰 谭思源 戴新华 龚晓云 弓爱君

引用本文: 高晓梅, 尹欣驰, 谭思源, 戴新华, 龚晓云, 弓爱君. 电喷雾离子化过程中蛋白质超多电荷离子生成方法研究进展[J]. 分析化学, 2021, 49(10): 1607-1618. doi: 10.19756/j.issn.0253-3820.210485 shu
Citation:  GAO Xiao-Mei,  YIN Xin-Chi,  TAN Si-Yuan,  DAI Xin-Hua,  GONG Xiao-Yun,  GONG Ai-Jun. Recent Advances in Supercharging of Proteins During Electrospray Ionization[J]. Chinese Journal of Analytical Chemistry, 2021, 49(10): 1607-1618. doi: 10.19756/j.issn.0253-3820.210485 shu

电喷雾离子化过程中蛋白质超多电荷离子生成方法研究进展

    通讯作者: 龚晓云,E-mail:gxy@nim.ac.cn; 弓爱君,E-mail:gongaijun@ustb.edu.cn
  • 基金项目:

    国家自然科学基金项目(No.21927812)和中国计量科学研究院基本科研业务费项目(No.AKY1932)资助。

摘要: 电喷雾离子化(Electrospray ionization,ESI)技术是目前常用的生物分子质谱离子化技术之一。在ESI过程中,蛋白质等生物大分子会携带多重电荷,形成多电荷离子。多电荷离子的形成,可有效降低待测离子的质荷比(Mass-to-charge ratio,m/z),扩大可检测分子量范围,提高检测灵敏度,为生物大分子的质谱分析带来较多便利。近年来,研究者提出了一些可在ESI过程中进一步提高蛋白质分子所带电荷数的方法,并将该方法称为蛋白质超多电荷化(Supercharging of proteins)方法。本文对蛋白质超多电荷化方法进行了系统的归纳和总结,综述了这些方法的离子化机理及影响因素,并对其应用进行了介绍。

English


    1. [1]

      CHAPMAN S. Phys. Rev., 1937, 52(3):184-190.CHAPMAN S. Phys. Rev., 1937, 52(3):184-190.

    2. [2]

      DOLE M, MACK L L, HINES R L, MOBLEY R C. J. Chem. Phys., 1968, 49(5):2240.DOLE M, MACK L L, HINES R L, MOBLEY R C. J. Chem. Phys., 1968, 49(5):2240.

    3. [3]

      MACK L L, KRALIK P, RHEUDE A, DOLE M. J. Chem. Phys., 1970, 52(10):4977-4986.MACK L L, KRALIK P, RHEUDE A, DOLE M. J. Chem. Phys., 1970, 52(10):4977-4986.

    4. [4]

      FENN J B, MANN M, MENG C K, WONG S, WHITEHOUSE C. Science, 1989, 246(4926):64-71.FENN J B, MANN M, MENG C K, WONG S, WHITEHOUSE C. Science, 1989, 246(4926):64-71.

    5. [5]

      BRUNINS A P, COVEY T R, HENION J D. Anal. Chem., 1987, 59(22):2642-2646.BRUNINS A P, COVEY T R, HENION J D. Anal. Chem., 1987, 59(22):2642-2646.

    6. [6]

      WHITEHOUSE C M, DREYER R N, YAMASHITA M, FENN J B. Anal. Chem., 1985, 57(3):675-679.WHITEHOUSE C M, DREYER R N, YAMASHITA M, FENN J B. Anal. Chem., 1985, 57(3):675-679.

    7. [7]

      WWILM M, MANN M. Anal. Chem., 1996, 68(1):1-8.WWILM M, MANN M. Anal. Chem., 1996, 68(1):1-8.

    8. [8]

      IAVARONE A T, JURCHEN J C, WILLIAMS E R. Anal. Chem., 2001, 73(7):1455-1460.IAVARONE A T, JURCHEN J C, WILLIAMS E R. Anal. Chem., 2001, 73(7):1455-1460.

    9. [9]

      IAVARONE A T, WILLIAMS E R. Int. J. Mass Spectrom., 2002, 219(1):63-72.IAVARONE A T, WILLIAMS E R. Int. J. Mass Spectrom., 2002, 219(1):63-72.

    10. [10]

      IAVARONE A T, WILLIAMS E R. J. Am. Chem. Soc., 2003, 125(8):2319-2327.IAVARONE A T, WILLIAMS E R. J. Am. Chem. Soc., 2003, 125(8):2319-2327.

    11. [11]

      HILLENKAMP F, KARAS M, BEAVIS R C, CHAIT B T. Anal. Chem., 1991, 63(24):1288.HILLENKAMP F, KARAS M, BEAVIS R C, CHAIT B T. Anal. Chem., 1991, 63(24):1288.

    12. [12]

      KITOVA E N, EL-HAWIET A, SCHNIER P D, KLASSEN J S. J. Am. Soc. Mass Spectrom., 2012, 23(3):431-441.KITOVA E N, EL-HAWIET A, SCHNIER P D, KLASSEN J S. J. Am. Soc. Mass Spectrom., 2012, 23(3):431-441.

    13. [13]

      HOGAN C J, CARROLL J A, ROHRS H W, BISWAS P, GROSS M L. Anal. Chem., 2009, 81(1):369-377.HOGAN C J, CARROLL J A, ROHRS H W, BISWAS P, GROSS M L. Anal. Chem., 2009, 81(1):369-377.

    14. [14]

      METWALLY H, KONERMANN L. Anal. Chem., 2018, 90(6):4126-4134.METWALLY H, KONERMANN L. Anal. Chem., 2018, 90(6):4126-4134.

    15. [15]

      METWALLY H, DUEZ Q, KONERMANN L. Anal Chem., 2018, 90(16):10069-10077.METWALLY H, DUEZ Q, KONERMANN L. Anal Chem., 2018, 90(16):10069-10077.

    16. [16]

      TEO C A, DONALD W A. Anal. Chem., 2014, 86(9):4455-4462.TEO C A, DONALD W A. Anal. Chem., 2014, 86(9):4455-4462.

    17. [17]

      DOUGLASS K A, VENTER A R. J. Am. Soc. Mass Spectrom., 2012, 23(3):489-497.DOUGLASS K A, VENTER A R. J. Am. Soc. Mass Spectrom., 2012, 23(3):489-497.

    18. [18]

      LOMELI S H, YIN S P, LOO R O. J. Am. Soc. Mass Spectrom., 2010, 21(1):127-131.LOMELI S H, YIN S P, LOO R O. J. Am. Soc. Mass Spectrom., 2010, 21(1):127-131.

    19. [19]

      ZENAIDEE M A, LEEMING M G, ZHANG F T, FUNSTON T T, DONALD W A. Angew. Chem., Int. Ed., 2017, 56(29):8522-8526.ZENAIDEE M A, LEEMING M G, ZHANG F T, FUNSTON T T, DONALD W A. Angew. Chem., Int. Ed., 2017, 56(29):8522-8526.

    20. [20]

      SHERLING H J, DALY M P, FELD G K, THOREN K L, KINTZER A F, KRANTZ B A, WILLIAMS E R. J. Am. Soc. Mass Spectrom., 2010, 21(10):1762-1774.SHERLING H J, DALY M P, FELD G K, THOREN K L, KINTZER A F, KRANTZ B A, WILLIAMS E R. J. Am. Soc. Mass Spectrom., 2010, 21(10):1762-1774.

    21. [21]

      WYTTENBACH T, BOWERS M T. J. Phys. Chem. B, 2011, 115(42):12266-12275.WYTTENBACH T, BOWERS M T. J. Phys. Chem. B, 2011, 115(42):12266-12275.

    22. [22]

      HALL Z, ROBINSON C V. J. Am. Soc. Mass Spectrom., 2012, 23(7):1161-1168.HALL Z, ROBINSON C V. J. Am. Soc. Mass Spectrom., 2012, 23(7):1161-1168.

    23. [23]

      NSHANIAN M, LAKSHMANAN R, CHENG H, LOO R O, LOO J A. Int. J. Mass Spectrom., 2018, 427:157-164.NSHANIAN M, LAKSHMANAN R, CHENG H, LOO R O, LOO J A. Int. J. Mass Spectrom., 2018, 427:157-164.

    24. [24]

      BENNETT R, OLESIK S V. Anal. Chim. Acta, 2017, 960:151-159.BENNETT R, OLESIK S V. Anal. Chim. Acta, 2017, 960:151-159.

    25. [25]

      WANG Y H, OLESIK S V. Anal. Chem., 2019, 91(1):935-942.WANG Y H, OLESIK S V. Anal. Chem., 2019, 91(1):935-942.

    26. [26]

      FOLEY E D, ZENAIDEE M A, TABOR R F, HO J, BEVES J E, DONALD W A. Anal. Chim. Acta:X, 2019, 1:100004.FOLEY E D, ZENAIDEE M A, TABOR R F, HO J, BEVES J E, DONALD W A. Anal. Chim. Acta:X, 2019, 1:100004.

    27. [27]

      KHANAL D D, BAGHDADY Y Z, FIGARD B J, SCHUG K A. Rapid Commun. Mass Spectrom., 2019, 33(9):821-830.KHANAL D D, BAGHDADY Y Z, FIGARD B J, SCHUG K A. Rapid Commun. Mass Spectrom., 2019, 33(9):821-830.

    28. [28]

      FLICK T G, WILLIAMS E R. J. Am. Soc. Mass Spectrom., 2012, 23(11):1885-1895.FLICK T G, WILLIAMS E R. J. Am. Soc. Mass Spectrom., 2012, 23(11):1885-1895.

    29. [29]

      ABZALIMOV R R, KALTASHOV I A. Anal. Chem., 2010, 82(18):7523-7526.ABZALIMOV R R, KALTASHOV I A. Anal. Chem., 2010, 82(18):7523-7526.

    30. [30]

      YANG Y, NIU C D, BOBST C E, KALTASHOV I A. Anal. Chem., 2021, 93(7):3337-3342.YANG Y, NIU C D, BOBST C E, KALTASHOV I A. Anal. Chem., 2021, 93(7):3337-3342.

    31. [31]

      KEENER J E, ZAMBRANO D E, ZHANG G Z, ZAK C K, REID D J, DEODHAR B S, PEMBERTON J E, PRELL J S, MARTY M T. J. Am. Chem. Soc., 2019, 141(2):1054-1061.KEENER J E, ZAMBRANO D E, ZHANG G Z, ZAK C K, REID D J, DEODHAR B S, PEMBERTON J E, PRELL J S, MARTY M T. J. Am. Chem. Soc., 2019, 141(2):1054-1061.

    32. [32]

      MARTY M T, HOI K K, GAULT J, ROBINSON C V. Angew. Chem., Int. Ed., 2016, 55(2):550-554.MARTY M T, HOI K K, GAULT J, ROBINSON C V. Angew. Chem., Int. Ed., 2016, 55(2):550-554.

    33. [33]

      KE M F, ZHANG H, DING J H, XIONG X C, LI F L, CHINGIN K, KOU W, LIUA Y, ZHU T G, FANG X, CHEN H W. Anal. Chem., 2019, 91(5):3215-3220.KE M F, ZHANG H, DING J H, XIONG X C, LI F L, CHINGIN K, KOU W, LIUA Y, ZHU T G, FANG X, CHEN H W. Anal. Chem., 2019, 91(5):3215-3220.

    34. [34]

      SANTOS I C, BRODBELT J S. J. Am. Soc. Mass Spectrom., 2021, 32(6):1370-1379.SANTOS I C, BRODBELT J S. J. Am. Soc. Mass Spectrom., 2021, 32(6):1370-1379.

    35. [35]

      LI X Y, LI Z X, XIE B E, SHARP J S. J. Am. Soc. Mass Spectrom., 2015, 26(8):1424-1427.LI X Y, LI Z X, XIE B E, SHARP J S. J. Am. Soc. Mass Spectrom., 2015, 26(8):1424-1427.

    36. [36]

      MEYER J G, KOMIVES E A. J. Am. Soc. Mass Spectrom., 2012, 23(8):1390-1399.MEYER J G, KOMIVES E A. J. Am. Soc. Mass Spectrom., 2012, 23(8):1390-1399.

    37. [37]

      ZHANG J, LOO R O, LOO J A. Int. J. Mass Spectrom., 2015, 377(1):546-556.ZHANG J, LOO R O, LOO J A. Int. J. Mass Spectrom., 2015, 377(1):546-556.

    38. [38]

      WANSEELE Y V, BONGAERTSA J, SEGERSA K, VIAENEB J, BUNDELA D D, HEYDEN Y V, SMOLDERSA I, EECKHAUT A V. Talanta, 2019, 198:206-214.WANSEELE Y V, BONGAERTSA J, SEGERSA K, VIAENEB J, BUNDELA D D, HEYDEN Y V, SMOLDERSA I, EECKHAUT A V. Talanta, 2019, 198:206-214.

    39. [39]

      VALEJA S G, KAISER N K, XIAN F, HENDRICKSON C L, ROUSE J C, MARSHALL A G. Anal. Chem., 2011, 83(22):8391-8395.VALEJA S G, KAISER N K, XIAN F, HENDRICKSON C L, ROUSE J C, MARSHALL A G. Anal. Chem., 2011, 83(22):8391-8395.

    40. [40]

      COMPTON P D, ZAMDBORG L, THOMAS P M, KELLEHER N L. Anal. Chem., 2011, 83(17):6868-6874.COMPTON P D, ZAMDBORG L, THOMAS P M, KELLEHER N L. Anal. Chem., 2011, 83(17):6868-6874.

    41. [41]

      MIRZA U A, CHAIT B T. Int. J. Mass Spectrom. Ion Processes, 1997, 162(1-3):173-181.MIRZA U A, CHAIT B T. Int. J. Mass Spectrom. Ion Processes, 1997, 162(1-3):173-181.

    42. [42]

      GOING C C, XIA Z J, WILLIAMS E R. Analyst, 2015, 140(21):7184-7194.GOING C C, XIA Z J, WILLIAMS E R. Analyst, 2015, 140(21):7184-7194.

    43. [43]

      SHERLING H J, CASSOU C A, TRNKA M J, BURLINGAME A L, KRANTZ B A, WILLIAMS E R. Phys. Chem. Chem. Phys., 2011, 13(41):18288-18296.SHERLING H J, CASSOU C A, TRNKA M J, BURLINGAME A L, KRANTZ B A, WILLIAMS E R. Phys. Chem. Chem. Phys., 2011, 13(41):18288-18296.

    44. [44]

      SHERLING H J, WILLIAMS E R. Anal. Chem., 2010, 82(21):9050-9057.SHERLING H J, WILLIAMS E R. Anal. Chem., 2010, 82(21):9050-9057.

    45. [45]

      SHERLING H J, DALY M P, FELD G K, THOREN K L, KINTZER A F, KRANTZ B A, WILLIAMS E R. J. Am. Soc. Mass Spectrom., 2010, 21(10):1762-1774.SHERLING H J, DALY M P, FELD G K, THOREN K L, KINTZER A F, KRANTZ B A, WILLIAMS E R. J. Am. Soc. Mass Spectrom., 2010, 21(10):1762-1774.

    46. [46]

      SHERLING H J, PRELL J S, CASSOU C A, WILLIAMS E R. J. Am. Soc. Mass Spectrom., 2011, 22(7):1178-1186.SHERLING H J, PRELL J S, CASSOU C A, WILLIAMS E R. J. Am. Soc. Mass Spectrom., 2011, 22(7):1178-1186.

    47. [47]

      CASSOU C A, WILLIAMS E R. Anal. Chem., 2014, 86(3):1640-1647.CASSOU C A, WILLIAMS E R. Anal. Chem., 2014, 86(3):1640-1647.

    48. [48]

      MORTENSEN D N, WILLIAMS E R. Analyst, 2016, 141(19):5598-5606.MORTENSEN D N, WILLIAMS E R. Analyst, 2016, 141(19):5598-5606.

    49. [49]

      MORTENSEN D N, WILLIAMS E R. J. Am. Chem. Soc., 2016, 138(10):3453-3460.MORTENSEN D N, WILLIAMS E R. J. Am. Chem. Soc., 2016, 138(10):3453-3460.

    50. [50]

      MORTENSEN D N, WILLIAMS E R. Anal. Chem., 2016, 88(19):9662-9668.MORTENSEN D N, WILLIAMS E R. Anal. Chem., 2016, 88(19):9662-9668.

    51. [51]

      MARK L P, GILL M C, MAHUT M, DERRICK P J. Eur. J. Mass Spectrom., 2012, 18(5):439-446.MARK L P, GILL M C, MAHUT M, DERRICK P J. Eur. J. Mass Spectrom., 2012, 18(5):439-446.

    52. [52]

      FISHER C M, KHARLAMOVA A, MCLUCKEY S A. Anal. Chem., 2014, 86(9):4581-4588.FISHER C M, KHARLAMOVA A, MCLUCKEY S A. Anal. Chem., 2014, 86(9):4581-4588.

    53. [53]

      ZHAO F F, MATT S M, BU J X, REHRAUER O G, BEN-AMOTZ D, MCLUCKEY S A. J. Am. Soc. Mass Spectrom., 2017, 28(10):2001-2010.ZHAO F F, MATT S M, BU J X, REHRAUER O G, BEN-AMOTZ D, MCLUCKEY S A. J. Am. Soc. Mass Spectrom., 2017, 28(10):2001-2010.

    54. [54]

      CAVANAGH J, BENSON L M, TOMPSON R, NAYLOR S. Anal. Chem., 2003, 75(14):3281-3286.CAVANAGH J, BENSON L M, TOMPSON R, NAYLOR S. Anal. Chem., 2003, 75(14):3281-3286.

    55. [55]

      WILSON D J, KONERMANN L. Anal. Chem., 2005, 77(21):6887-6894.WILSON D J, KONERMANN L. Anal. Chem., 2005, 77(21):6887-6894.

    56. [56]

      NGUYEN G T, TRAN T N, PODGORSKI M N, BELL S G, SUPURAN C T, DONALD W A. ACS Cent. Sci., 2019, 5(2):308-318.NGUYEN G T, TRAN T N, PODGORSKI M N, BELL S G, SUPURAN C T, DONALD W A. ACS Cent. Sci., 2019, 5(2):308-318.

    57. [57]

      GONG X Y, XIONG X C, ZHAO Y C, YE S J, FANG X. Anal. Chem., 2017, 89(13):7009-7016.GONG X Y, XIONG X C, ZHAO Y C, YE S J, FANG X. Anal. Chem., 2017, 89(13):7009-7016.

    58. [58]

      GONG X Y, LI C, ZHAI R, XIE J, JIANG Y, FANG X. Anal. Chem., 2019, 91(3):1826-1837.GONG X Y, LI C, ZHAI R, XIE J, JIANG Y, FANG X. Anal. Chem., 2019, 91(3):1826-1837.

    59. [59]

      FENG L L, GONG X Y, SONG J F, ZHAI R, HUANG Z J, FANG X, DAI X H. Anal. Chem., 2020, 92(2):1770-1779.FENG L L, GONG X Y, SONG J F, ZHAI R, HUANG Z J, FANG X, DAI X H. Anal. Chem., 2020, 92(2):1770-1779.

    60. [60]

      KONERMANN L. J. Am. Soc. Mass Spectrom., 2017, 28(9):1827-1835.KONERMANN L. J. Am. Soc. Mass Spectrom., 2017, 28(9):1827-1835.

    61. [61]

      KONERMANN L, METWALLY H, DUEZ Q, PETER I. Analyst, 2019, 144(21):6157-6171.KONERMANN L, METWALLY H, DUEZ Q, PETER I. Analyst, 2019, 144(21):6157-6171.

    62. [62]

      RAHMAN M M, CHEN L C. Anal. Chim. Acta, 2018, 1021:78-84.RAHMAN M M, CHEN L C. Anal. Chim. Acta, 2018, 1021:78-84.

    63. [63]

      YIN Z B, HUANG J, MIAO H, HU O, LI H L. Anal. Chem., 2020, 92(18):12312-12321.YIN Z B, HUANG J, MIAO H, HU O, LI H L. Anal. Chem., 2020, 92(18):12312-12321.

    64. [64]

      BOUZA M, LI Y F, WU C S, GUO H Y, FERNANDEZ F M. J. Am. Soc. Mass Spectrom., 2020, 31(3):727-734.BOUZA M, LI Y F, WU C S, GUO H Y, FERNANDEZ F M. J. Am. Soc. Mass Spectrom., 2020, 31(3):727-734.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  34
  • HTML全文浏览量:  4
文章相关
  • 收稿日期:  2021-05-07
  • 修回日期:  2021-07-21
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章