Citation: LIU Jin-Zheng,  ZHANG Li-Xue. Progress in Application of Atomic Layer Deposition Technique in Electroanalytical Chemistry[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(11): 1767-1778. doi: 10.19756/j.issn.0253-3820.210481 shu

Progress in Application of Atomic Layer Deposition Technique in Electroanalytical Chemistry

  • Corresponding author: ZHANG Li-Xue, zhanglx@qdu.edu.cn
  • Received Date: 5 May 2021
    Revised Date: 20 July 2021

    Fund Project: Supported by the National Natural Science Foundation of China (No.21775078).

  • Electrochemical analysis has been widely used in the field of highly sensitive detection of bioactive molecules and gases, but the controllable preparation of high-performance electrode materials has always been challenging. Atomic layer deposition can realize the precise preparation of thin film materials and nanomaterials through continuous self-restricted semi-reactions, and provides a novel, simple, and precise method for the controllable preparation of high-performance electrode materials for electroanalysis. This paper first summarizes the principles and characteristics of atomic layer deposition, and then focuses on the application progresses of atomic layer deposition in the field of electrochemical detection of biomolecules and gas molecules. In addition, the application perspectives of atomic layer deposition in the field of electroanalytical chemistry are proposed.
  • 加载中
    1. [1]

      CHALKER P R. Surf. Coat Technol., 2016, 291(15):258-263.

    2. [2]

      GEORGE S M. Chem. Rev., 2010, 110(1):111-131.

    3. [3]

      RITALA M, LESKELA M. Handbook of Thin Films:Atomic Layer Deposition. Academic Press, 2002:103-159.

    4. [4]

      MALYGIN A A, DROZD V E, MALKOV A A, SMIRNOV V M. Chem. Vap. Deposition, 2015, 21(10):216-240.

    5. [5]

      PUURUNEN R L. Chem. Vap. Deposition, 2014, 20(10):332-344.

    6. [6]

      SUNTOLA T, ANTSON J. US Patent, 1977, 4(58):430.

    7. [7]

      HAMALAINEN J, RITALA M, LESKELA M. Chem. Mater., 2014, 26(1):786-801.

    8. [8]

      KIM H. J. Vac. Sci. Technol. B., 2003, 21(6):2231-2261.

    9. [9]

      MENGX B, CAOY Q, LIBERA J A, ELAM J W. Chem. Mater., 2017, 29(21):9043-9052.

    10. [10]

      AALTONEN T, RITALA M, TUNG Y L, CHI Y, ARSTILA K, MEINANDER K, LESKELA M. J. Mater. Res., 2004, 19(11):3353-3358.

    11. [11]

      HONG Y, KIM C H, SHIN J, KIM K Y, KIM J S, HWANG C S, LEE J H. Sens. Actuators, B, 2016, 232:653-659.

    12. [12]

      NAKASHIMA Y, OHNO Y, KISHIMOTO S, OKOCHI M, HONDA H, MIZUTANI T. J. Nanosci. Nanotechnol., 2010, 10(6):3805-3809.

    13. [13]

      CHIA C, SHULAKER M M, PROVINE J, JEFFREY S S, HOWE T R. ACS Appl. Mater. Interfaces, 2019, 11(29):26082-26092.

    14. [14]

      SONG G, WANG Y, QI Y, LI W, ZHANG L. Rare Met., 2020, 39(7):784-791.

    15. [15]

      WEBER M, IATSUNSKYI I, COY E, MIELE P, CORNU D, BECHELANY M. Adv. Mater. Interfaces, 2018, 5(16):1800056.

    16. [16]

      SUN F, DUAN Y, YANG Y, CHEN P, DUAN Y, WANG X, YANG D, XUE K. Org. Electron., 2014, 15(10):2546-2552.

    17. [17]

      JUR J S, SWEETIIIJ W, OLDHAM C J, PARSONS G N. Adv. Funct. Mater., 2011, 21(11):1993-2002.

    18. [18]

      WANG T, ZHU H, ZHUO J, ZHU Z, PAPAKONSTANTINOU P, LUBARSKY G, LIN J, LI M. Anal. Chem., 2013, 85(21):10289-10295.

    19. [19]

      BAI J, JIANG X. Anal. Chem., 2013, 85(17):8095-8101.

    20. [20]

      LIU J, BO X, ZHAO Z, GUO L. Biosens. Bioelectron., 2015, 74(15):71-77.

    21. [21]

      ROBERTS J G, VOINOV M A, SCHMIDT A C, SMIRNOVA T I, SOMBERS L A. J. Am. Chem. Soc., 2016, 138(8):2516-2519.

    22. [22]

      MARICHY C, PINNA N. Adv. Mater. Interfaces, 2016, 3(21):1600335.

    23. [23]

      CHAAYA A A, VITER R, BALEVICIUTE I, BECHELANY M, RAMANAVICIUS A, GERTNERE Z, ERTS D, SMYNTYNA V, MIELE P. J. Phys. Chem. C, 2014, 118(7):3811-3819.

    24. [24]

      GU Y, LU H, GENG Y, YE Z, ZHANG Y, SUN Q, DING S, ZHANG D. Nanoscale Res. Lett., 2013, 8(1):107-111.

    25. [25]

      COP P, CELIK E, HESS K, MORYSON Y, KLEMENT P, ELM T M, SMARSLY M B. ACS Appl. Nano Mater., 2020, 3(11):10757-10766.

    26. [26]

      JIAO S, LIU L, WANG J, MA K, LV J. Small, 2020, 16(28):2001223.

    27. [27]

      LIU L, MA K, XU X, SHANGGUAN C, LV J, ZHU S, JIAO S, WANG J. ACS Appl. Mater. Interfaces, 2020,12(26):29074-29084.

    28. [28]

      WU L, ZHOU X, WAN G, TANG Y, SHI S, XU X, WANG G. Dalton Trans., 2021, 50(13):95-102.

    29. [29]

      OCTAVIO G, MATTHIEU W, SEBASTIEN B, PHILIPPE M, MIKHAEL B. Biosens. Bioelectron., 2018, 122:147-159.

    30. [30]

      LESKELA M, RITALA M. Angew. Chem., Int. Ed., 2003, 42(45):5548-5554.

    31. [31]

      ASUNDI S A, RAIFORD A J, BENT F S. ACS Energy Lett., 2019,4(4):908-925.

    32. [32]

      PUURUNEN R L. J. Appl. Phys., 2005, 97(12):121301.

    33. [33]

      FABREGUETTE F H, WIND R A, GEORGE S M. Appl. Phys. Lett., 2006, 88(1):013116.

    34. [34]

      GRONER M D, ELAM J W, FABREGUETTE F H, GEORGE S M. Thin Solid Films, 2002, 413(1-2):186-197.

    35. [35]

      YANG P, TONG X, WANG G, GAO Z, GUO X, QIN Y. ACS Appl. Mater. Interfaces, 2015, 7(8):4772-4777.

    36. [36]

      WA Q, XIONG W, ZHAO R, HE Z, CHEN Y, WANG X. ACS Appl. Nano Mater., 2019, 2(7):4427-4434.

    37. [37]

      CHOI T, KIM S H, LEE C W, KIM H, CHOI S K, KIM S H, KIM E, PARK J, KIM H. Biosens. Bioelectron.,2015, 63:325-330.

    38. [38]

      RAZA M H, MOVLAEE K, WU Y, SAYED M, KARG M, LEONARDI G S, NERI G, PINNA N. ChemElectroChem, 2019, 6(2):383-392.

    39. [39]

      ZHUIYKOV S, HYDE L, HAI Z, AKBARI M K, KATS E, DETAVERNIER C, XUE C, XU C. Appl. Mater. Today, 2017, 6:44-53.

    40. [40]

      XU H, WEI Z, VERPOORT F, HU J, ZHUIYKOV S. Nanoscale Res. Lett., 2020, 15(1):41-55.

    41. [41]

      ZHANG C, HUANG B, QIAN L, YUAN S, WANG S, CHEN R. ChemPhysChem, 2016, 17(1):98-104.

    42. [42]

      WEI Z, HAI Z, AKBARI M K, QI D, XING K, ZHAO Q, VERPOORT F, HU J, HYDE L, ZHUIYKOV S. Sens. Actuators, B, 2018, 262:334-344.

    43. [43]

      ZHAO L, YU J, YUE S, ZHANG L, WANG Z, GUO P, LIU Q. J. Electroanal. Chem., 2018, 808:245-251.

    44. [44]

      JANG D Y, KIM Y P, KIM H S, KO P S H, CHOI S Y, CHOI Y K. J. Vac. Sci. Technol., B:Microelectron. Nanometer Struct.-Process., Meas., Phenom., 2007, 25(2):443-447.

    45. [45]

      CHEN Y, LIU M, KANEKO T, MCINTYRE C P. Electrochem. Solid-State Lett., 2010, 13(3):29-32.

    46. [46]

      MA F, YANG B, ZHAO Z, ZHAO Y, PAN R, WANG D, KONG Y, CHEN Y, HUANG G, KONG J, MEI Y. ACS Appl. Nano Mater., 2020, 3(10):10032-10039.

    47. [47]

      WINKLER T E, DIETRICH R, KIM E, BEN Y H, KELLY D L, PAYNE G F, GHODSSI R. Electrochem. Commun., 2017, 79:33-36.

    48. [48]

      CHEN P, MITSUIT B, FARMER B D, GOLOVCHENKO J, GORDON G R, BRANTON D. Nano Lett., 2004, 4(7):1333-1337.

    49. [49]

      LEPOITEVIN M, BECHELANY M, BALANZAT E, JANOT J M, BALME S. Electrochim. Acta, 2016, 211:611-618.

    50. [50]

      NG S, PRASEK J, ZAZPE R, PYTLICEK Z, SPOTZ Z, PEREIRA Z R, MICHALICKA J, PRIKRYL J, MILOSKRBAL M, SOPHA H, HUBALEK J, MACAK M J. ACS Appl. Mater. Interfaces, 2020, 12(29):33386-33396

    51. [51]

      FAN K, GUO J, CHA L, CHEN Q, MA J. J. Alloys Compd., 2017, 698:336-340.

    52. [52]

      LIU B, ALAMRI M, WALSH M, DOOLIN L J, BERRIE L C, WU Z J. ACS Appl. Mater. Interfaces, 2020, 12(47):53115-53124.

    53. [53]

      WEI Z, HAI Z, AKBARI M K, HU J, HYDE L, DEPUYDT S, VERPOORT F, ZHUKOV S. ChemElectroChem, 2018, 5(2):266-272.

    54. [54]

      BAE G, JEON S I, JANG M, SONG W, MYUNG S, LIM J, LEE S S, JUNG H K, PARK H Y, AN K S. ACS Appl. Mater. Interfaces, 2019, 11(18):16830-16837.

    55. [55]

      HONG Y, WU M, BAE J H, HONG S, JEONG Y, JANG D, KIM S J, HWANG S H, PARK B G, LEE J H, Sens. Actuators, B, 2020, 302:127147.

    56. [56]

      JIN C, KIM H, PARK S, CHOI S W, KIM S S, LEE C. Surf. Interface Anal., 2012, 44(11-12):1534-1537.

    57. [57]

      BANG H J, LEE N, MIRZAEI A, CHOI S M, CHOI H, JEON H, KIM S S, KIM W H. Sens. Actuators, B, 2020, 319:128309.

    58. [58]

      KONDALKAR V V, DUY T L, SEO H, LEE K. ACS Appl. Mater. Interfaces, 2019, 11(29):25891-25900.

    59. [59]

      TAKACS M, DUCSO C, PAPE A. J. Mater. Sci.:Mater. Electron., 2017, 22(28):17148-17155.

    60. [60]

      YAO T, YAN L. Ceram. Int., 2020, 46(7):9936-9942.

    61. [61]

      XU Y, ZHENG L, YANG C, ZHENG W, LIU X, ZHANG J. Sens. Actuators, B, 2020, 310:127846.

    62. [62]

      LOU C, YANG C, ZHENG W, LIU X, ZHANG J. Sens. Actuators, B, 2021, 329:129218.

    63. [63]

      XU Y, LOU C, ZHENG L, ZHENG W, LIU X, KUMAR M, ZHANG J. Sens. Actuators, B, 2020, 307:127616.

    64. [64]

      RAZA M H, MOVLAEE K, LEONARDI S G, BARSAN N, NERI G, PINNA N. Adv. Funct. Mater., 2020, 30(6):1906874.

    65. [65]

      XU Y, ZHENG W, LIU X, ZHANG L, ZHENG L, YANG C, PINNA N, ZHANG J. Mater. Horiz., 2020, 7(6):1519-1527.

  • 加载中
    1. [1]

      Feng Lin Zhongxin Jin Caiying Li Cheng Shao Yang Xu Fangze Li Siqi Liu Ruining Gu . Preparation and Electrochemical Properties of Nickel Foam-Supported Ni(OH)2-NiMoO4 Electrode Material. University Chemistry, 2025, 40(10): 225-232. doi: 10.12461/PKU.DXHX202412017

    2. [2]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    3. [3]

      Ao XIABotao YUJun CHENGuoqiang TAN . Preparation and electrochemical property of Ce-doped MnO2. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2514-2526. doi: 10.11862/CJIC.20250163

    4. [4]

      Zeqiu ChenLimiao CaiJie GuanZhanyang LiHao WangYaoguang GuoXingtao XuLikun Pan . Advanced electrode materials in capacitive deionization for efficient lithium extraction. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-0. doi: 10.1016/j.actphy.2025.100089

    5. [5]

      Yuying JIANGJia LUOZhan GAO . Development status and prospects of solid oxide cell high entropy electrode catalysts. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1719-1730. doi: 10.11862/CJIC.20250124

    6. [6]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    7. [7]

      Fangqi Yang . Teaching Practice and Reflection on Contact Angle Measurement Instrument in Material Chemistry Analysis. University Chemistry, 2025, 40(11): 397-401. doi: 10.12461/PKU.DXHX202412008

    8. [8]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    9. [9]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    10. [10]

      Ru SONGBiao WANGChunling LUBingbing NIUDongchao QIU . Electrochemical properties of stable and highly active PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 639-649. doi: 10.11862/CJIC.20240397

    11. [11]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-0. doi: 10.3866/PKU.WHXB202310046

    12. [12]

      Pengcheng YanPeng WangJing HuangZhao MoLi XuYun ChenYu ZhangZhichong QiHui XuHenan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-0. doi: 10.3866/PKU.WHXB202309047

    13. [13]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    14. [14]

      Hongren RONGGexiang GAOZhiwei LIUKe ZHOULixin SUHao HUANGWenlong LIUQi LIU . High-performance supercapacitor based on 1D cobalt-based coordination polymer. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1183-1195. doi: 10.11862/CJIC.20250034

    15. [15]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    16. [16]

      Zhuomin Zhang Lanrui Yang Baorong Zhang Gongke Li . 化学分析全英课程思政建设初探. University Chemistry, 2025, 40(8): 58-65. doi: 10.12461/PKU.DXHX202410010

    17. [17]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    18. [18]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    19. [19]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    20. [20]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

Metrics
  • PDF Downloads(42)
  • Abstract views(1873)
  • HTML views(315)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return