基于配位增强效应均相活化过氧单硫酸盐的比色法检测钴离子(Ⅱ)

明闰勉 张才灵 谢良波 尚登辉 李轶

引用本文: 明闰勉, 张才灵, 谢良波, 尚登辉, 李轶. 基于配位增强效应均相活化过氧单硫酸盐的比色法检测钴离子(Ⅱ)[J]. 分析化学, 2021, 49(9): 1515-1522. doi: 10.19756/j.issn.0253-3820.210480 shu
Citation:  MING Run-Mian,  ZHANG Cai-Ling,  XIE Liang-Bo,  SHANG Deng-Hui,  LI Yi. Colorimetric Detection of Co2+ Based on Ligand Effect Enhancement for Homogeneous Activation of Peroxymonosulfate[J]. Chinese Journal of Analytical Chemistry, 2021, 49(9): 1515-1522. doi: 10.19756/j.issn.0253-3820.210480 shu

基于配位增强效应均相活化过氧单硫酸盐的比色法检测钴离子(Ⅱ)

    通讯作者: 李轶,E-mail:liyi@tju.edu.cn
  • 基金项目:

    国家自然科学基金项目(No.21874099)和天津市自然科学基金项目(No.20YFZCSN01070)资助。

摘要: 钴在人体中具有重要作用,但高浓度的钴会引起一系列疾病。过氧单硫酸盐(PMS)是一种具有不对称结构的氧化剂,一定浓度的Co2+可催化活化PMS产生活性自由基。Co2+与Ac-之间有配位增强效应,向Co2+-PMS体系中引入给电子体Ac-可加快电子传递,从而增强Co2+对PMS的催化活性,产生更多的硫酸根自由基(SO4·-)和羟基自由基(·OH),进而增强氧化3,3',5,5'-四甲基联苯胺(TMB)的能力。基于Co2+对PMS均相催化活化能力以及Ac-的配位增强效应,本研究设计了一种无需催化剂的绿色高效的Co2+比色检测方法。在优化的条件下,即1.0 mmol/L NaAc、0.4 mmol/L TMB和0.3 mmol/L PMS,温度为25℃的条件下,Co2+浓度在0.5~3.0 μmol/L范围内与体系在652 nm处的吸光度(A652 nm)呈良好的线性关系,检出限(S/N=3)为29 nmol/L。本方法检测Co2+的特异性良好,与其它检测Co2+的方法相比,无需使用大型仪器,不需要复杂的操作过程,可快速、高效、绿色地实现Co2+的检测。

English


    1. [1]

      SHIRANI M, SALARI F, HABIBOLLAHI S, AKBARI A. Microchem. J., 2020, 152:104340.SHIRANI M, SALARI F, HABIBOLLAHI S, AKBARI A. Microchem. J., 2020, 152:104340.

    2. [2]

      LI H, WANG J, DU J. Talanta, 2021, 223:121712.LI H, WANG J, DU J. Talanta, 2021, 223:121712.

    3. [3]

      CAMPBELL J R, ESTEY M P. Clin. Chem. Lab. Med., 2013, 51(1):213-220.CAMPBELL J R, ESTEY M P. Clin. Chem. Lab. Med., 2013, 51(1):213-220.

    4. [4]

      MAZUR F, LIU L, LI H, HUANG J, CHANDRAWATI R. Sens. Actuators, B, 2018, 268:182-187.MAZUR F, LIU L, LI H, HUANG J, CHANDRAWATI R. Sens. Actuators, B, 2018, 268:182-187.

    5. [5]

      YANG L, ZHEN S J, LIU Z D, HUANG C Z. Anal. Methods, 2014, 6(14):5054-5058.YANG L, ZHEN S J, LIU Z D, HUANG C Z. Anal. Methods, 2014, 6(14):5054-5058.

    6. [6]

      TAN Y, YU J, CUI Y, YANG Y, WANG Z, HAO X, QIAN G. Analyst, 2011, 136(24):5283-5286.TAN Y, YU J, CUI Y, YANG Y, WANG Z, HAO X, QIAN G. Analyst, 2011, 136(24):5283-5286.

    7. [7]

      DU J, WANG J, HUANG W, DENG Y, HE Y. Anal. Chem., 2018, 90(16):9959-9965.DU J, WANG J, HUANG W, DENG Y, HE Y. Anal. Chem., 2018, 90(16):9959-9965.

    8. [8]

      SHAO S, QIAN L, ZHAN X, WANG M, LU K, PENG J, MIAO D, GAO S. Chem. Eng. J., 2020, 382:123005.SHAO S, QIAN L, ZHAN X, WANG M, LU K, PENG J, MIAO D, GAO S. Chem. Eng. J., 2020, 382:123005.

    9. [9]

      KANG J, ZHOU L, DUAN X, SUN H, AO Z, WANG S. Matter, 2019, 1(3):745-758.KANG J, ZHOU L, DUAN X, SUN H, AO Z, WANG S. Matter, 2019, 1(3):745-758.

    10. [10]

      PENG J B, ZHANG C N, ZHANG Y Z, SHAO S, WANG P P, LIU G G, DONG H, LIU D X, SHI J L, CAO Z G, LIU H J, GAO S X. Ecotox. Environ. Safe., 2020, 198:110676.PENG J B, ZHANG C N, ZHANG Y Z, SHAO S, WANG P P, LIU G G, DONG H, LIU D X, SHI J L, CAO Z G, LIU H J, GAO S X. Ecotox. Environ. Safe., 2020, 198:110676.

    11. [11]

      LAI L, ZHOU H, LAI B. Chem. Eng. J., 2018, 349:633-645.LAI L, ZHOU H, LAI B. Chem. Eng. J., 2018, 349:633-645.

    12. [12]

      ZHOU Z, LIU X, SUN K, LIN C, MA J, HE M, OUYANG W. Chem. Eng. J., 2019, 372:836-851.ZHOU Z, LIU X, SUN K, LIN C, MA J, HE M, OUYANG W. Chem. Eng. J., 2019, 372:836-851.

    13. [13]

      ANIPSITAKIS G P, DIONYSIOU D D. Environ. Sci. Technol., 2004, 38(13):3705-3712.ANIPSITAKIS G P, DIONYSIOU D D. Environ. Sci. Technol., 2004, 38(13):3705-3712.

    14. [14]

      WANG Z, YUAN R, GUO Y, XU L, LIU J. J. Hazard. Mater., 2011, 190(1-3):1083-1087.WANG Z, YUAN R, GUO Y, XU L, LIU J. J. Hazard. Mater., 2011, 190(1-3):1083-1087.

    15. [15]

      LI Z, CHEN Z, XIANG Y, LING L, FANG J, SHANG C, DIONYSIOU D D. Water Res., 2015, 83:132-140.LI Z, CHEN Z, XIANG Y, LING L, FANG J, SHANG C, DIONYSIOU D D. Water Res., 2015, 83:132-140.

    16. [16]

      GB 25467-2010. Emission Standard of Pollutants for Copper, Nickel, Cobale Industy. National Standards of the People's Republic of China. 铜、镍、钴工业污染物排放标准. 中华人民共和国国家标准. GB 25467-2010.

    17. [17]

      LI T, ZHAO Z, WANG Q, XIE P, MA J. Water Res., 2016, 105:479-486.LI T, ZHAO Z, WANG Q, XIE P, MA J. Water Res., 2016, 105:479-486.

    18. [18]

      SUN L, CHEN D, WAN S, YU Z, LI M. Chem. Eng. J., 2017, 326:1030-1039.SUN L, CHEN D, WAN S, YU Z, LI M. Chem. Eng. J., 2017, 326:1030-1039.

    19. [19]

      CHEN M, ZHU L H, LIU S G, LI R, WANG N, TANG H Q. J. Hazard. Mater., 2019, 371:456-462.CHEN M, ZHU L H, LIU S G, LI R, WANG N, TANG H Q. J. Hazard. Mater., 2019, 371:456-462.

    20. [20]

      LIU R, XU Y, CHEN B. Environ. Sci. Technol., 2018, 52(12):7043-7053.LIU R, XU Y, CHEN B. Environ. Sci. Technol., 2018, 52(12):7043-7053.

    21. [21]

      ZHOU X Q, LUO C G, LUO M Y, WANG Q L, WANG J, LIAO Z W, CHEN Z L, CHEN Z Q. Chem. Eng. J., 2020, 381:122587.ZHOU X Q, LUO C G, LUO M Y, WANG Q L, WANG J, LIAO Z W, CHEN Z L, CHEN Z Q. Chem. Eng. J., 2020, 381:122587.

    22. [22]

      XU Z, WU T, CAO Y, CHEN C, KE S, ZENG X, LIN P. Chem. Eng. J., 2020, 392:123639.XU Z, WU T, CAO Y, CHEN C, KE S, ZENG X, LIN P. Chem. Eng. J., 2020, 392:123639.

    23. [23]

      ZHAO R X, LIU A Y, WEN Q L, WU B C, WANG J, HU Y L, PU Z F, LING J, CAO Q. Spectrochim. Acta, Part A, 2021, 254:119628.ZHAO R X, LIU A Y, WEN Q L, WU B C, WANG J, HU Y L, PU Z F, LING J, CAO Q. Spectrochim. Acta, Part A, 2021, 254:119628.

    24. [24]

      CELESTINA J J, THARMARAJ P, JEEVIKA A, SHEELA C D. Microchem. J., 2020, 155:104692.CELESTINA J J, THARMARAJ P, JEEVIKA A, SHEELA C D. Microchem. J., 2020, 155:104692.

    25. [25]

      ZHAO C, LI X, CHENG C, YANG Y. Microchem. J., 2019, 147:183-190.ZHAO C, LI X, CHENG C, YANG Y. Microchem. J., 2019, 147:183-190.

    26. [26]

      HU P, LONG M. Appl. Catal., B, 2016, 181:103-117.HU P, LONG M. Appl. Catal., B, 2016, 181:103-117.

  • 加载中
计量
  • PDF下载量:  2
  • 文章访问数:  27
  • HTML全文浏览量:  3
文章相关
  • 收稿日期:  2021-05-05
  • 修回日期:  2021-05-28
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章