基于DNA步行器信号放大的便携式传感器检测铅离子

苏永欢 蔡杰 杨雅妮 刘冰倩

引用本文: 苏永欢, 蔡杰, 杨雅妮, 刘冰倩. 基于DNA步行器信号放大的便携式传感器检测铅离子[J]. 分析化学, 2022, 50(4): 525-534. doi: 10.19756/j.issn.0253-3820.201787 shu
Citation:  SU Yong-huan,  CAI Jie,  YANG Ya-ni,  LIU Bing-qian. A Portable Sensor Based on DNA Walker Signal Amplification for Detection of Pb2+[J]. Chinese Journal of Analytical Chemistry, 2022, 50(4): 525-534. doi: 10.19756/j.issn.0253-3820.201787 shu

基于DNA步行器信号放大的便携式传感器检测铅离子

    通讯作者: 刘冰倩,E-mail:nqliu@gzu.edu.cn
  • 基金项目:

    国家自然科学基金项目(Nos.21864007,21605029)

    贵州省自然科学基金项目(Nos.黔科合基础[2020] 1042,黔科合平台人才[2017] 5788,黔科合平台人才[2018] 5781)资助

摘要: 基于Pb2+与底物链(Substrate DNA, sDNA)的特异性识别,以Fe3O4纳米磁珠(Fe3O4 nano-magnetic beads, MB)为基底,便携式血糖仪(Portable glucose meter, PGM)为信号读出系统,利用DNA步行器放大信号,构建了一种灵敏且便捷的用于铅离子(Pb2+)检测的传感器。利用葡萄糖氧化酶(Glucose oxidase, GOx)和sDNA修饰还原法制备纳米金功能化的聚酰胺-胺型(Nanogold-functionalized poly(amidoamine), Au/PAMAM)树枝分子,形成sDNA/GOx/Au/PAMAM复合物;基于碱基互补配对原则,sDNA/GOx/Au/PAMAM复合物被固载于捕获链(Capture DNA, cDNA)修饰的MB(MB/cDNA)上,而DNA酶(DNAzyme)可与sDNA未碱基配对部分结合。当目标物存在时,Pb2+可特异性识别s DNA上裂解位点并剪切,释放DNAzyme和GOx/Au/PAMAM。DNAzyme继续与sDNA/GOx/Au/PAMAM复合物上下一个sDNA配对结合,继而开启下一轮识别-剪切-释放,循环往复,形成DNA步行器,增加GOx/Au/PAMAM释放量,实现信号放大。反应体系中Pb2+浓度越高,释放的GOx/Au/PAMAM量越多,通过磁性分离取上清液(GOx/Au/PAMAM)催化反应液中的葡萄糖(Glucose, Glu)氧化,使葡萄糖的浓度降低。用PGM测定Glu浓度,从而实现对Pb2+浓度的间接测定。在最佳实验条件下,体系对PGM的响应值与Pb2+浓度的对数呈反比,线性范围为1.00 pmol/L~1.00μmol/L,检出限为0.66 pmol/L。

English


    1. [1]

      HE W, LUO L, LIU Q, CHEN Z. Anal. Chem., 2018, 90(7):4770-4775.HE W, LUO L, LIU Q, CHEN Z. Anal. Chem., 2018, 90(7):4770-4775.

    2. [2]

      LIN W, LI Z, BURNS M. Anal. Chem., 2017, 89(17):8748-8756.LIN W, LI Z, BURNS M. Anal. Chem., 2017, 89(17):8748-8756.

    3. [3]

      CHEN C, HUANG W. J. Am. Chem. Soc., 2002, 124(22):6246-6247.CHEN C, HUANG W. J. Am. Chem. Soc., 2002, 124(22):6246-6247.

    4. [4]

      KAVALLIERATOS K, ROSENBERG J, CHEN W, REN T. J. Am. Chem. Soc., 2005, 127(18):6514-6515.KAVALLIERATOS K, ROSENBERG J, CHEN W, REN T. J. Am. Chem. Soc., 2005, 127(18):6514-6515.

    5. [5]

      DUAN N, LI C, SONG M, WANG Z, ZHU C, WU S. Spectrochim. Acta, Part A, 2022, 265(15):120342.DUAN N, LI C, SONG M, WANG Z, ZHU C, WU S. Spectrochim. Acta, Part A, 2022, 265(15):120342.

    6. [6]

      BABU S, KUMAR K, SUVARDHAN K, KIRAN K, REKHA D, KRISHNAIAH L, JANARDHANAM K,CHIRANJEEVI P. Environ. Monit. Assess., 2007, 128:241-249.BABU S, KUMAR K, SUVARDHAN K, KIRAN K, REKHA D, KRISHNAIAH L, JANARDHANAM K,CHIRANJEEVI P. Environ. Monit. Assess., 2007, 128:241-249.

    7. [7]

      COCHERIE A, ROBERT M. Chem. Geol., 2007, 243:90-104.COCHERIE A, ROBERT M. Chem. Geol., 2007, 243:90-104.

    8. [8]

      MORTADA W I, KENAWY I M, ABDELGHANY A M, ISMAL A M, DONIA A F, NABIEH K A. Mater. Sci. Eng.C, 2015, 52(1):288-296.MORTADA W I, KENAWY I M, ABDELGHANY A M, ISMAL A M, DONIA A F, NABIEH K A. Mater. Sci. Eng.C, 2015, 52(1):288-296.

    9. [9]

      LIU S, SUN J, HUO J, DUAN X, LIU Y. Anal. Sci., 2019, 35(5):499-504.LIU S, SUN J, HUO J, DUAN X, LIU Y. Anal. Sci., 2019, 35(5):499-504.

    10. [10]

      SUN Q, WANG J, TANG M, HUANG L, ZHANG Z, LIU C, LU X, HUNTER K W, CHEN G. Anal. Chem., 2017,89(9):5024-5029.SUN Q, WANG J, TANG M, HUANG L, ZHANG Z, LIU C, LU X, HUNTER K W, CHEN G. Anal. Chem., 2017,89(9):5024-5029.

    11. [11]

      LIU Tao, LI Dan, LIANG Jie, WANG Xiu-Mei. Chin. J. Anal. Chem., 2020, 48(2):248-254.刘涛,李丹,梁杰,汪秀妹.分析化学, 2020, 48(2):248-254.

    12. [12]

      MALIK L, BASHIR A, QUREASHI A, PANDITH A. Environ. Chem. Lett., 2019, 17:1495-1521.MALIK L, BASHIR A, QUREASHI A, PANDITH A. Environ. Chem. Lett., 2019, 17:1495-1521.

    13. [13]

      ZHAO G, LIU G. IEEE Sens. J., 2018, 18(14):5645-5655.ZHAO G, LIU G. IEEE Sens. J., 2018, 18(14):5645-5655.

    14. [14]

      LU W, LIN C, YANG J, WANG X, YAO B, WANG M. Anal. Bioanal. Chem., 2019, 411(21):5383-5391.LU W, LIN C, YANG J, WANG X, YAO B, WANG M. Anal. Bioanal. Chem., 2019, 411(21):5383-5391.

    15. [15]

      TANG D, TANG J, SU B, CHEN G. Biosens. Bioelectron., 2011, 26(5):2090-2096.TANG D, TANG J, SU B, CHEN G. Biosens. Bioelectron., 2011, 26(5):2090-2096.

    16. [16]

      TANG J, HUANG Y, ZHANG C, LIU H, TANG D. Biosens. Bioelectron., 2016, 86:386-392.TANG J, HUANG Y, ZHANG C, LIU H, TANG D. Biosens. Bioelectron., 2016, 86:386-392.

    17. [17]

      YUAN Y, ZHANG G, LI Y, ZHANG G, ZHANG F, FAN X. Polym. Chem., 2013, 4(6):2164-2167.YUAN Y, ZHANG G, LI Y, ZHANG G, ZHANG F, FAN X. Polym. Chem., 2013, 4(6):2164-2167.

    18. [18]

      QIU Z, TANG D, SHU J, CHEN G, TANG D. Biosens. Bioelectron., 2016, 75:108-115.QIU Z, TANG D, SHU J, CHEN G, TANG D. Biosens. Bioelectron., 2016, 75:108-115.

    19. [19]

      AN Y, JIANG X, BI W, CHEN H, JIN L, ZHANG S, WANG C, ZHANG W. Biosens. Bioelectron., 2012, 32(1):224-230.AN Y, JIANG X, BI W, CHEN H, JIN L, ZHANG S, WANG C, ZHANG W. Biosens. Bioelectron., 2012, 32(1):224-230.

    20. [20]

      HOU Y, WANG J, JIANG Y, LV C, XIA L, HONG S, LIN M, LIN Y, ZHANG Z, PANG D. Biosens. Bioelectron.,2018, 99:186-192.HOU Y, WANG J, JIANG Y, LV C, XIA L, HONG S, LIN M, LIN Y, ZHANG Z, PANG D. Biosens. Bioelectron.,2018, 99:186-192.

    21. [21]

      WANG W, LI J, DONG C, LI Y, KOU Q, YAN J, ZHANG L. Anal. Chim. Acta, 2018, 1042(26):116-124.WANG W, LI J, DONG C, LI Y, KOU Q, YAN J, ZHANG L. Anal. Chim. Acta, 2018, 1042(26):116-124.

    22. [22]

      SHU B, ZHANG C, XING D. Biosens. Bioelectron., 2017, 97:360-368.SHU B, ZHANG C, XING D. Biosens. Bioelectron., 2017, 97:360-368.

    23. [23]

      WEI M, WANG C, XU E, CHEN J, XU X, WEI W, LIU S. Food Chem., 2019, 282(1):141-146.WEI M, WANG C, XU E, CHEN J, XU X, WEI W, LIU S. Food Chem., 2019, 282(1):141-146.

    24. [24]

      LIU J, HU Q, QI L, LIN J, LI Y. J. Hazard. Mater., 2020, 400(5):123218.LIU J, HU Q, QI L, LIN J, LI Y. J. Hazard. Mater., 2020, 400(5):123218.

    25. [25]

      WANG K, HE M, ZHAI F, WANG J, HE R, YU Y. Biosens. Bioelectron., 2018, 105:159-165.WANG K, HE M, ZHAI F, WANG J, HE R, YU Y. Biosens. Bioelectron., 2018, 105:159-165.

    26. [26]

      YANG F, ZHONG X, JIANG X, ZHUO Y, YUAN R, WEI S. Biosens. Bioelectron., 2019, 130:262-268.YANG F, ZHONG X, JIANG X, ZHUO Y, YUAN R, WEI S. Biosens. Bioelectron., 2019, 130:262-268.

    27. [27]

      CHANG Y, WU Z, SUN Q, ZHUO Y, CHAI Y, YUAN R. Anal. Chem., 2019, 91(13):8123-8128.CHANG Y, WU Z, SUN Q, ZHUO Y, CHAI Y, YUAN R. Anal. Chem., 2019, 91(13):8123-8128.

    28. [28]

      LIU X, NIAZOV-ELKAN A, WANG F, WILLNER I. Nano Lett., 2013, 13(1):219-225.LIU X, NIAZOV-ELKAN A, WANG F, WILLNER I. Nano Lett., 2013, 13(1):219-225.

    29. [29]

      DELIUS D, GEERTSEMA E M, LEIGH D A, TANG D D. J. Am. Chem. Soc., 2010, 132(45):16134-16145.DELIUS D, GEERTSEMA E M, LEIGH D A, TANG D D. J. Am. Chem. Soc., 2010, 132(45):16134-16145.

    30. [30]

      WANG C, REN J, QU X. Chem. Commun., 2011, 47(5):1428-1430.WANG C, REN J, QU X. Chem. Commun., 2011, 47(5):1428-1430.

    31. [31]

      XU Q, ZHANG Y, ZHANG C. Chem. Commun., 2015, 51(26):5652-5655.XU Q, ZHANG Y, ZHANG C. Chem. Commun., 2015, 51(26):5652-5655.

    32. [32]

      WANG Y, SONG W, ZHAO H, MA X, YANG S, QIAO X, SHENG Q, YUE T. Biosens. Bioelectron., 2021, 182:113171.WANG Y, SONG W, ZHAO H, MA X, YANG S, QIAO X, SHENG Q, YUE T. Biosens. Bioelectron., 2021, 182:113171.

    33. [33]

      YANG X, SHI D, ZHU S, WANG B, ZHANG X, WANG G. ACS Sens., 2018, 3(7):1368-1375.YANG X, SHI D, ZHU S, WANG B, ZHANG X, WANG G. ACS Sens., 2018, 3(7):1368-1375.

    34. [34]

      ESUMI K, SHINTARO AKIYAMA A, YOSHIMURA T. Langmuir, 2003, 19(18):7679-7681.ESUMI K, SHINTARO AKIYAMA A, YOSHIMURA T. Langmuir, 2003, 19(18):7679-7681.

    35. [35]

      SHI Wei-Ping, CAI Jie, YANG Ya-Ni, LUO Huan-Huan, LIU Bing-Qian, FU Qiu-Ping. Chin. J. Anal. Chem.,2019, 47(9):1337-1343.石维平,蔡杰,杨雅妮,罗欢欢,刘冰倩,付秋平.分析化学, 2019, 47(9):1337-1343.

    36. [36]

      CAO L, ZHANG Q, DAI H, FU Y, LI Y. Electroanalysis, 2018, 30(3):517-524.CAO L, ZHANG Q, DAI H, FU Y, LI Y. Electroanalysis, 2018, 30(3):517-524.

    37. [37]

      FANG J, GUO Y, YANG Y, YU W, TAO Y, DAI T, YUAN C, XIE G. Sens. Actuators, B, 2018, 272(1):118-126FANG J, GUO Y, YANG Y, YU W, TAO Y, DAI T, YUAN C, XIE G. Sens. Actuators, B, 2018, 272(1):118-126

    38. [38]

      LU L, SI J, GAO Z, ZHANG Y, LEI J, LUO H, LI N. Biosens. Bioelectron., 2015, 63:14-20.LU L, SI J, GAO Z, ZHANG Y, LEI J, LUO H, LI N. Biosens. Bioelectron., 2015, 63:14-20.

    39. [39]

      ZHANG J, TANG Y, TENG L, LU M, TANG D. Biosens. Bioelectron., 2015, 68:232-238.ZHANG J, TANG Y, TENG L, LU M, TANG D. Biosens. Bioelectron., 2015, 68:232-238.

    40. [40]

      SU P G, TZOU W H. Sens. Actuators, A, 2012, 179:44-49.SU P G, TZOU W H. Sens. Actuators, A, 2012, 179:44-49.

    41. [41]

      SANCHES E A, SOARES J C, IOST R M, MARANGONI V S, TROVATI G, BATISTA T, MAFUD A C,ZUCOLOTTO V, MASCARENHAS Y P. J. Nanomater., 2011, 2011:73-79.SANCHES E A, SOARES J C, IOST R M, MARANGONI V S, TROVATI G, BATISTA T, MAFUD A C,ZUCOLOTTO V, MASCARENHAS Y P. J. Nanomater., 2011, 2011:73-79.

    42. [42]

      LIN Y, ZHOU Q, LIN Y, TANG D, NIESSNER R, KNOPP D. Anal. Chem., 2015, 87(16):8531-8540.LIN Y, ZHOU Q, LIN Y, TANG D, NIESSNER R, KNOPP D. Anal. Chem., 2015, 87(16):8531-8540.

    43. [43]

      WRIGHT A K, THOMPSON M R. Biophys. J., 1975, 15(2):137-141.WRIGHT A K, THOMPSON M R. Biophys. J., 1975, 15(2):137-141.

    44. [44]

      EBRAHIMI A, RAVAN H, MEHRABANI M. Biosens. Bioelectron., 2020, 170:112710.EBRAHIMI A, RAVAN H, MEHRABANI M. Biosens. Bioelectron., 2020, 170:112710.

    45. [45]

      LI W, GAO Y, ZHANG J, WANG X, YIN F, LI Z, ZHANG M. Nanoscale Adv., 2020, 2(2):717-723.LI W, GAO Y, ZHANG J, WANG X, YIN F, LI Z, ZHANG M. Nanoscale Adv., 2020, 2(2):717-723.

    46. [46]

      LU Zhao, LIU Mao-Shun, GE Nai-Jia, ZHANG Yi-Zhi, REN Yuan, LI Na, ZHANG Yi-Qiong. Chem. Res. Appl.,2020, 32(2):194-201.陆钊,刘茂顺,葛乃嘉,张怡之,任元,李娜,张艺琼.化学研究与应用, 2020, 32(2):194-201.

    47. [47]

      FANG X, LIU Y, JIMENEZ L, DUAN Y, ADKINS G B, QIAO L, LIU B, ZHONG W. Anal. Chem., 2017, 89(21):11758-11764.FANG X, LIU Y, JIMENEZ L, DUAN Y, ADKINS G B, QIAO L, LIU B, ZHONG W. Anal. Chem., 2017, 89(21):11758-11764.

    48. [48]

      YU Y, YU C, NIU Y, CHEN J, ZHAO Y, ZHANG Y, GAO R, HE J. Biosens. Bioelectron., 2018, 101:297-303.YU Y, YU C, NIU Y, CHEN J, ZHAO Y, ZHANG Y, GAO R, HE J. Biosens. Bioelectron., 2018, 101:297-303.

    49. [49]

      TANG W, YU J, WANG Z, JEERAPAN I, YIN L, ZHANG F, HE P. Anal. Chim. Acta, 2019, 1078(31):1078:53-59.TANG W, YU J, WANG Z, JEERAPAN I, YIN L, ZHANG F, HE P. Anal. Chim. Acta, 2019, 1078(31):1078:53-59.

    50. [50]

      SHI Y, WANG H, JIANG X, SUN B, SONG B, SU Y, HE Y. Anal. Chem., 2016, 88(7):3723-3729.SHI Y, WANG H, JIANG X, SUN B, SONG B, SU Y, HE Y. Anal. Chem., 2016, 88(7):3723-3729.

    51. [51]

      JIANG D, DU X, CHEN D, ZHOU L, CHEN W, LI Y, HAO N, QIAN J, LIU Q, WANG K. Biosens. Bioelectron.,2016, 83:149-155.JIANG D, DU X, CHEN D, ZHOU L, CHEN W, LI Y, HAO N, QIAN J, LIU Q, WANG K. Biosens. Bioelectron.,2016, 83:149-155.

    52. [52]

      WANG X, YANG C, ZHU S, YAN M, GE S, YU J. Biosens. Bioelectron., 2017, 87:108-115.WANG X, YANG C, ZHU S, YAN M, GE S, YU J. Biosens. Bioelectron., 2017, 87:108-115.

  • 加载中
计量
  • PDF下载量:  4
  • 文章访问数:  546
  • HTML全文浏览量:  28
文章相关
  • 收稿日期:  2020-12-24
  • 修回日期:  2022-02-22
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章