有机聚合物材料电致化学发光在生化分析中的应用研究进展

崔琳 王鹏雨 王成铭 张春阳

引用本文: 崔琳, 王鹏雨, 王成铭, 张春阳. 有机聚合物材料电致化学发光在生化分析中的应用研究进展[J]. 分析化学, 2021, 49(5): 665-675. doi: 10.19756/j.issn.0253-3820.201722 shu
Citation:  CUI Lin,  WANG Peng-Yu,  WANG Cheng-Ming,  ZHANG Chun-Yang. Advance in Applications of Organic Polymer-based Electrochemiluminescence in Biochemical Analysis[J]. Chinese Journal of Analytical Chemistry, 2021, 49(5): 665-675. doi: 10.19756/j.issn.0253-3820.201722 shu

有机聚合物材料电致化学发光在生化分析中的应用研究进展

    通讯作者: 张春阳,E-mail:cyzhang@sdnu.edu.cn
  • 基金项目:

    国家自然科学基金项目(Nos.21735003,21527811,21605096,21974080)和山东省泰山学者优势特色学科人才团队项目资助。

摘要: 电致化学发光(Electrochemiluminescence,ECL)是在电极表面产生激发态自由基粒子,然后经过电子转移反应形成激发态发光的过程。有机聚合材料是一类由一种或几种分子/分子团(结构单元或单体)以共价键结合形成具有多个重复单体/单元的材料,包括金属有机框架材料(Metal-organic frameworks,MOFs)、金属-有机凝胶(Metal-organic gels,MOGs)、共轭微孔聚合材料(Conjugated microporous polymers,CMPs)和聚合点(Polymer dots,Pdots)等。有机聚合材料与含镉量子点相比,具有低毒和良好生物相容性等优点。有机聚合材料既可作为ECL发光体,也可增强发光体的ECL信号。基于有机聚合物材料构建的ECL传感器具有选择性好、特异性高、设备简单、信号稳定、检测方便、灵敏度高、动态范围宽和低背景等优点,广泛用于环境监测、免疫分析和核糖核酸检测等领域。本文综述了有机聚合物材料ECL在生化分析中的应用研究进展,着重介绍了有机聚合物材料ECL传感器用于金属离子、生物小分子、核糖核酸和蛋白质的检测研究,对有机聚合物材料ECL传感器的发展趋势进行了展望。

English


    1. [1]

      CAI X L, ZHENG B, ZHOU Y, YOUNIS M R, WANG F B, ZHANG W M, ZHOU Y G, XIA X H. Chem. Sci., 2018, 9(28):6080-6084.

    2. [2]

      LIAO X J, LUO J J, WU J, FAN T T, YAO Y, GAO F L, QIAN Y. J. Electroanal. Chem., 2018, 829:129-137.

    3. [3]

      LIAO X J, WU J, DU Y, PENG W, YAO Y, MACHUKI J O, GENG D Q, GAO F L. Anal. Methods, 2018, 10(39):4765-4775.

    4. [4]

      ZHAO M H, CUI L, ZHANG C Y. Chem. Commun., 2020, 56(20):2971-2974.

    5. [5]

      HU L Z, XU G B. Chem. Soc. Rev., 2010, 39(8):3275-3304.

    6. [6]

      MIAO W, CHOI J P, BARD A. J. J. Am. Chem. Soc., 2002, 124(48):14478-14485.

    7. [7]

      SWANICK K N, LADOUCEUR S, ZYSMAN-COLMAN E, DING Z.Angew. Chem., Int. Ed., 2012, 51(44):11079-11082.

    8. [8]

      KING K A, SPELLANE P J, WATTS R. J. Am. Chem. Soc., 1985, 107(5):1431-1432.

    9. [9]

      BOLLETTA F, ROSSI A, BALZANI V. Inorg. Chim. Acta, 1981, 53(1):23-24.

    10. [10]

      WILSON R. Chem. Soc. Rev., 2008, 37(9):2028-2045.

    11. [11]

      JAIN P K, HUANG X, EL-SAYED I H, EL-SAYED M A. Plasmonics, 2007, 2(3):107-118.

    12. [12]

      JAIN P K, HUANG X, EL-SAYED I H, EL-SAYED M A. Acc. Chem. Res., 2008, 41(12):1578-1586.

    13. [13]

      HUANG X H, JAIN P K, EL-SAYED I H, EL-SAYED M A. Nanomedicine, 2007, 2(5):681-693.

    14. [14]

      DING S Y, WANG W. Chem. Soc. Rev., 2013, 42(2):548-568.

    15. [15]

      WANG C, LIU D M, LIN W B. J. Am. Chem. Soc., 2013, 135(36):13222-13234.

    16. [16]

      TALIN A A, CENTRONE A, FORD A C, FOSTER M E, STAVILA V, HANEY P, KINNE R A. Science, 2014, 343(6166):66-69.

    17. [17]

      FURUKAWA H, GÁNDARA F, ZHANG Y B, JIANG J C, QUEEN W L, HUDSON M R, YAGHI O M. J. Am. Chem. Soc., 2014, 136(11):4369-4381.

    18. [18]

      WANG S S, ZHAO Y Y, WANG M M, LI H J, SAQIB M, GE C H, ZHANG X D, JIN Y D. Anal. Chem., 2019, 91(4):3048-3054.

    19. [19]

      QIN X L, DONG Y F, WANG M H, ZHUZ W, LI M X, YANG D, SHAO Y H. ACS Sens., 2019, 4(9):2351-2357.

    20. [20]

      SHAO H L, LU J, ZHANG Q Q, HU Y F, WANG S, GUO Z Y. Sens. Actuators, B, 2018, 268:39-46.

    21. [21]

      HU G B, XIONG C Y, LIANG W B, YANG Y, YAO L Y, HUANG W, LUO W, YUAN R, XIAO D R. Biosens. Bioelectron., 2019. 135:95-101.

    22. [22]

      JIANG X Y, WANG Z L, WANG H J, ZHUO Y, YUAN R, CHAI Y Q. Chem. Commun., 2017, 53(70):9705-9708.

    23. [23]

      WANG Z L, JIANG X Y, YUAN R, CHAI Y Q. Biosens. Bioelectron., 2018, 121:250-256.

    24. [24]

      ETHIRAJAN M, CHEN Y H, JOSHI P, PANDEY R K. Chem. Soc. Rev., 2011, 40(1):340-362.

    25. [25]

      GALVÁN-MIRANDA E K, CASTRO-CRUZ H M, ARIAS-OREA J A, IURLO M, VALENTI G, MARCACCIO M, MACÍAS-RUVALCABA N A. Phys. Chem. Chem. Phys., 2016, 18(22):15025-15038.

    26. [26]

      HARTNETT P E, MAUCK C M, HARRIS M A, YOUNG R M, WU Y L, MARKS T J, WASIELEWSKI M R. J. Am. Chem. Soc., 2017, 139(2):749-756.

    27. [27]

      LI L L, DIAU E W G. Chem. Soc. Rev., 2013, 42(1):291-304.

    28. [28]

      WU H, FAN S H, JIN X Y, ZHANG H, CHEN H, DAI Z, ZOU X Y. Anal. Chem., 2014, 86(13):6285-6290.

    29. [29]

      LIAO X J, ZHANG L, WANG S N, LEI J P. Electrochem. Commun., 2019, 100:60-63.

    30. [30]

      CAI W R, ZENG H B, XUE H G, MARKS R S, COSNIER S, ZHANG X J, SHAN D. Anal. Chem., 2020, 92(2):1916-1924.

    31. [31]

      PU G Q, YANG Z F, WU Y L, WANG Z, DENG Y, GAO Y J, ZHANG Z, LU X Q. Anal. Chem., 2019, 91(3):2319-2328.

    32. [32]

      ZHANG G Y, CAI C, COSNIER S, ZENG H B, ZHANG X, SHAN D. Nanoscale, 2016, 8:11649-11657.

    33. [33]

      DAUMANN L J. Angew. Chem., Int. Ed., 2019, 58(37):12795-12802.

    34. [34]

      REN X F, HU H, FAROOQI I, SIMPKINS J W. Nat. Commun., 2020, 11(1):4078.

    35. [35]

      WANG Y G, ZHAO G H, CHI H, YANG S H, NIU Q F, WU D, CAO W, LI T D, MA H M, WEI Q. J. Am. Chem. Soc., 2021, 143(1):504-512

    36. [36]

      LI Y, JIANG Z W, XIAO S Y, HUANG C Z, LI Y F. Anal. Chem., 2018, 90(20):12191-12197.

    37. [37]

      LI Y, HE L, HUANG C Z, LI Y F. Biosens. Bioelectron., 2019, 134:29-35.

    38. [38]

      KOIZUMI T, KAMEDA T, SAITO H, SATO A, HAYASHI S. Polym. Sci., Part A:Polym. Chem., 2019, 57(7):827-832.

    39. [39]

      NAMGUNG H, LEE J J, GWON Y J, LEE T S. RSC Adv., 2018, 8(60):34291-34296.

    40. [40]

      LEE J, BUYUKCAKIR O, KWON T W, COSKUN A. J. Am. Chem. Soc., 2018, 140(35):10937-10940.

    41. [41]

      ZHOU H, ZHAO B, FU C, WU Z Q, WANG C G, DING Y, HAN B H, HU A G. Macromolecules, 2019, 52(10):3935-3941.

    42. [42]

      LIN Z Z, CHEN Y, LI X H, FANG W H. Analyst, 2011, 136(11):2367-2372.

    43. [43]

      GU C, HUANG N, GAO J, XU F, XU Y H, JIANG D L. Angew. Chem., Int. Ed., 2014, 53(19):4850-4855.

    44. [44]

      JU P Y, WU S J, SU Q, LI X D, LIU Z Q, LI G H, WU Q L. J. Mater. Chem. A, 2019, 7(6):2660-2666.

    45. [45]

      SURESH V M, BONAKALA S, ROY S, BALASUBRAMANIAN S, MAJ T K. J. Phys. Chem. C, 2014, 118(42):24369-24376.

    46. [46]

      YUAN W Z, HU R R, JACKY W Y L, XIE N, CATHY K W J, TANG B Z. Chem. -Eur. J., 2012, 18(10):2847-2856.

    47. [47]

      LI X, LI Z, YANG Y W. Adv. Mater., 2018, 30(20):1800177.

    48. [48]

      LV W X, YANG Q T, LI H Y, LI F. Anal. Chem., 2020, 92(17):11747-11754.

    49. [49]

      LIU H W, WANG L F, GAO H F, QI H L, GAO Q, ZHANG C X. ACS Appl. Mater. Interfaces, 2017, 9(51):44324-44331.

    50. [50]

      CUI L, YU S L, GAO W Q, ZHANG X M, DENG S Y, ZHANG C Y. ACS Appl. Mater. Interfaces, 2020, 12(7):7966-7973.

    51. [51]

      ZHOU J, YANG Y, ZHANG C Y. Chem. Rev., 2015, 115(21):11669-11717.

    52. [52]

      HU J, WANG Z Y, LI C C, ZHANG C Y. Chem. Commun., 2017, 53(100):13284-13295.

    53. [53]

      PALACIOS R E, FAN F R F, GREY J K, SUK J, BARD A J, BARBARA P F. Nat. Mater., 2007, 6(9):680-685.

    54. [54]

      CHANG Y L, PALACIOS R E, FAN F R F, BARD A J, BARBARA P F. J. Am. Chem. Soc., 2008, 130(28):8906-8907.

    55. [55]

      WANG N N, FENG Y Q, WANG Y W, JU H X, YAN F. Anal. Chem., 2018, 90(12):7708-7714.

    56. [56]

      FENG Y Q, DAI C H, LEI J P, JU H X, CHENG Y X. Anal. Chem., 2015, 88(1):845-850.

    57. [57]

      WANG Z Y, FENG Y Q, WANG N N, CHENG Y X, QUAN Y W, JU H X. J. Phys. Chem. Lett., 2018, 9(18):5296-5302.

    58. [58]

      GAO H, ZHANG N, PAN J B, QUAN Y W, CHENG Y X, CHEN H Y, XU J J. ACS Appl. Mater. Interfaces, 2020, 12(48):54012-54019.

    59. [59]

      WANG Z Y, PAN J B, LI Q, ZHOU Y, YANG S, XU J J, HUA D B. Adv. Funct. Mater., 2020, 30(30):2000220.

    60. [60]

      MA C, CAO Y, GOU X D, ZHU J J. Anal. Chem., 2020, 92(1):431-454.

    61. [61]

      FENG Y Q, WANG Y Q, JU H X. Anal. Chem., 2018, 90(2):1202-1208.

    62. [62]

      SUN F, WANG Z Y, FENG Y Q, CHENG Y X, JU H X, QUAN Y W. Biosens. Bioelectron., 2018, 100:28-34.

    63. [63]

      WANG N N, GAO H, LI Y Z, LI G M, CHEN W W, JIN Z C, LEI J P, WEI Q, JU H X. Angew. Chem. Int. Ed., 2021, 60(1):197-201.

    64. [64]

      FENG Y Q, SUN F, WANG N N, LEI J P, JU H X. Anal. Chem., 2017, 89(14):7659-7666.

  • 加载中
计量
  • PDF下载量:  16
  • 文章访问数:  1148
  • HTML全文浏览量:  209
文章相关
  • 收稿日期:  2020-12-03
  • 修回日期:  2021-02-26
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章