荧光金属纳米团簇的制备及其在环境污染物检测中的应用研究进展

穆晋 杨巾栏 张大伟 贾琼

引用本文: 穆晋, 杨巾栏, 张大伟, 贾琼. 荧光金属纳米团簇的制备及其在环境污染物检测中的应用研究进展[J]. 分析化学, 2021, 49(3): 319-329. doi: 10.19756/j.issn.0253-3820.201664 shu
Citation:  MU Jin,  YANG Jin-Lan,  ZHANG Da-Wei,  JIA Qiong. Progress in Preparation of Metal Nanoclusters and Their Application in Detection of Environmental Pollutants[J]. Chinese Journal of Analytical Chemistry, 2021, 49(3): 319-329. doi: 10.19756/j.issn.0253-3820.201664 shu

荧光金属纳米团簇的制备及其在环境污染物检测中的应用研究进展

    通讯作者: 张大伟,E-mail:daweizhang9@163.com; 贾琼,E-mail:jiaqiong@jlu.edu.cn
  • 基金项目:

    吉林省科技厅自然科学基金项目(No.20190201079JC)资助。

摘要: 环境污染物存在难降解、易累积等问题,对人体健康和生态环境构成严重威胁。因此,实现污染物的快速、灵敏检测至关重要。金属纳米团簇(Metal nanoclusters,MNCs)因具有尺寸小、稳定性高、制备耗时短和易修饰等性质,在化学传感领域表现出良好的应用前景。MNCs作为一种新型荧光纳米材料,在污染物检测方面备受关注。本文评述了近年来MNCs在检测重金属离子、硫化物、氰化物、多硝基芳族物质、甲醛、有机农药、细菌和病毒等物质方面的研究进展,并对MNCs的发展前景进行了展望。

English


    1. [1]

      YAMAUCHI Y, IDO M, OHTA M, MAEDA H. Chem. Pharm. Bull., 2004, 52(5):552-555.

    2. [2]

      HEIDARI H, RAZMI H. Talanta, 2012, 99:13-21.

    3. [3]

      ZACHARIS C K, CHRISTOPHORIDIS C, FYTIANOS K. J. Sep. Sci., 2012, 35(18):2422-2429.

    4. [4]

      SONGA E A, OKONKWO J O. Talanta, 2016, 155:289-304.

    5. [5]

      AN Chun, DU Pei-Yao, ZHANG Zhen, LU Xiao-Quan. Chin. J. Anal. Chem., 2020, 48(3):355-362. 安春, 杜佩瑶, 张振, 卢小泉. 分析化学, 2020, 48(3):355-362.

    6. [6]

      ZHANG Xia-Hong, ZHOU Ting-Yao, CHEN Xi. Chin. J. Anal. Chem., 2015, 43(9):1296-1305. 张夏红, 周廷尧, 陈曦. 分析化学, 2015, 43(9):1296-1305.

    7. [7]

      YANG J L, LI Z, JIA Q. Sens. Actuators, B, 2019, 297:126807.

    8. [8]

      YANG J L, LI Z, JIA Q. Chem. Commun., 2020, 56(20):3081-3084.

    9. [9]

      LI Z, LI L, HU D L, GAO C, XIONG J Y, JIANG H Y, LI W. J. Colloid Interface Sci., 2019, 539:400-413.

    10. [10]

      GUO X R, HUANG J Z, WEI Y B, ZENG Q, WANG L S. J. Hazard. Mater., 2020, 381:120969.

    11. [11]

      WANG W, LI H J, YIN M Y, WANG K W, DENG Q L, WANG S, ZHANG Y K. Sens. Actuators, B, 2018, 255:1422-1429.

    12. [12]

      MO F Y, MA Z Y, WU T T, LIU M L, ZHANG Y Y, LI H T, YAO S Z. Sens. Actuators, B, 2019, 281:486-492.

    13. [13]

      SONG C X, XU J Y, CHEN Y, ZHANG L L, LU Y, QING Z H. Molecules, 2019, 24(22):4189.

    14. [14]

      ZHANG L B, WANG E K. Nano Today, 2014, 9(1):132-157.

    15. [15]

      LU Y Z, CHEN W. Chem. Soc. Rev., 2012, 41(9):3594-3623.

    16. [16]

      JIN R C. Nanoscale, 2015, 7(5):1549-1565.

    17. [17]

      YUAN X, LUO Z T, YU Y, YAO Q F, XIE J P. Chem. Asian J., 2013, 8(5):858-871.

    18. [18]

      PALMAL S, JANA N R. Wiley Interdiscip. Rev.:Nanomed. Nanobiotechnol., 2014, 6(1):102-110.

    19. [19]

      FU L L, LI C J, LI Y, CHEN S, LONG Y F, ZENG R J. Sens. Actuators, B, 2017, 240:315-321.

    20. [20]

      BOOTHARAJU M S, CHANG H, DENG G C, MALOLA S, BAEK W, HAKKINEN H, ZHENG N F, HYEON T. J. Am. Chem. Soc., 2019, 141(21):8422-8425.

    21. [21]

      YANG J L, SONG N Z, LV X J, JIA Q. Sens. Actuators, B, 2018, 259:226-232.

    22. [22]

      CAI Yu-Ling, ZHANG Ji-Mei. Chin. J. Anal. Chem., 2018, 46(6):952-959. 蔡宇玲, 张纪梅. 分析化学, 2018, 46(6):952-959.

    23. [23]

      ZHANG Guo, FENG Jian-Jun, CHAI Rui-Tao, ZHU Wei-Huang, KANG Qian-Wen, LI Hui. Chin. J. Anal. Chem., 2019, 47(4):583-590. 张国, 冯建军, 柴瑞涛, 朱维晃, 康倩文, 李卉. 分析化学, 2019, 47(4):583-590.

    24. [24]

      TANAKA S I, MIYAZAKI J, TIWARI D K, JIN T, INOUYE Y. Angew. Chem. Int. Ed., 2011, 50(2):431-435.

    25. [25]

      CHEN S H, HUANG Z Z, JIA Q. Sens. Actuators, B, 2020, 319:128305.

    26. [26]

      MOLARD Y, LABBE C, CARDIN J, CORDIER S. Adv. Funct. Mater., 2013, 23(38):4821-4825.

    27. [27]

      HU X, LIU T T, ZHUANG Y X, WANG W, LI Y Y, FAN W H, HUANG Y M. TrAC-Trends Anal. Chem., 2016, 77:66-75.

    28. [28]

      OU G Z, ZHAO J, CHEN P, XIONG C J, DONG F, LI B, FENG X J. Anal. Bioanal. Chem., 2018, 410(10):2485-2498.

    29. [29]

      ZHAO Y, ZHOU H M, ZHANG S J, XU J H. Methods Appl. Fluoresc., 2019, 8(1):012001.

    30. [30]

      LI D, KUMARI B, ZHANG X Z, WANG C P, MEI X F, ROTELLO V M. Adv. Colloid Interface Sci., 2020, 276:102090.

    31. [31]

      APARNA R S, ANJALI D J S, JOHN N, ABHA K, SYAMCHAND S S, GEORGE S. Spectrochim. Acta, Part A, 2018, 199:123-129.

    32. [32]

      QING T P, LONG C C, WANG X, ZHANG K W, ZHANG P, FENG B. Microchim. Acta, 2019, 186(4):248.

    33. [33]

      CHEN C, YUAN Z Q, CHANG H T, LU F N, LI Z H, LU C. Anal. Methods, 2016, 8(12):2628-2633.

    34. [34]

      ESSNER J B, CHEN X, WOOD T D, BAKER G A. Analyst, 2018, 143(5):1036-1041.

    35. [35]

      CAI Z F, ZHANG C F, JIA K. Chem. Pap., 2020, 74(6):1831-1838.

    36. [36]

      WANG H Q, DA L G, YANG L, CHU S Y, YANG F, YU S M, JIANG C L. J. Hazard. Mater., 2020, 392:122506.

    37. [37]

      YUAN Z Q, CAI N, DU Y, HE Y, YEUNG E S. Anal. Chem., 2014, 86(1):419-426.

    38. [38]

      KONG B Y, CAO Y J, YU Y L, ZHAO S. Microchem. J., 2020, 159:105388.

    39. [39]

      YANG L, CHEN J, HUANG T, HUANG L, SUN Z H, JIANG Y, YAO T, WEI S Q. J. Mater. Chem. C, 2017, 5(18):4448-4454.

    40. [40]

      DENG H H, LI K L, ZHUANG Q Q, PENG H P, ZHUANG Q Q, LIU A L, XIA X H, CHEN W. Nanoscale, 2018, 10(14):6467-6473.

    41. [41]

      JIN R C, QIAN H F, WU Z K, ZHU Y, ZHU M Z, MOHANTY A, GARG N. J. Phys. Chem. Lett., 2010, 1(19):2903-2910.

    42. [42]

      XU H X, SUSLICK K S. ACS Nano, 2010, 4(6):3209-3214.

    43. [43]

      MCGILVRAY K L, DECAN M R, WANG D S, SCAIANO J C. J. Am. Chem. Soc., 2006, 128(50):15980-15981.

    44. [44]

      BURRATTI L, CIOTTA E, BOLLI E, KACIULIS S, CASALBONI M, DE MATTEIS F, GARZON-MANJON A, SCHEU C, PIZZOFERRATO R, PROSPOSITO P. Colloids Surf. A, 2019, 579:123634.

    45. [45]

      BILECKA I, NIEDERBERGER M. Nanoscale, 2010, 2(8):1358-1374.

    46. [46]

      PAN Y A, WANG J D, GUO X M, LIU X Y, TANG X L, ZHANG H X. J. Colloid Interface Sci., 2018, 513:418-426.

    47. [47]

      YU F B, LI P, SONG P, WANG B S, ZHAO J Z, HAN K L. Chem. Commun., 2012, 48(23):2852-2854.

    48. [48]

      SUN J, YANG X R. Biosens. Bioelectron., 2015, 74:177-182.

    49. [49]

      LI S, FENG J Y, HUANG P C, WU F Y. New J. Chem., 2017, 41(21):12930-12936.

    50. [50]

      NASARUDDIN R R, CHEN T K, YAN N, XIE J P. Coord. Chem. Rev., 2018, 368:60-79.

    51. [51]

      LUO Z T, YUAN X, YU Y, ZHANG Q B, LEONG D T, LEE J Y, XIE J P. J. Am. Chem. Soc., 2012, 134(40):16662-16670.

    52. [52]

      BAI H Y, TU Z Q, LIU Y T, TAI Q X, GUO Z K, LIU S Y. J. Hazard. Mater., 2020, 386:121654.

    53. [53]

      LIN L Y, HU Y F, ZHANG L L, HUANG Y, ZHAO S L. Biosens. Bioelectron., 2017, 94:523-529.

    54. [54]

      JALILI R, KHATAEE A. Microchim. Acta, 2018, 186(1):29.

    55. [55]

      Li C Y, WEI C Y. Sens. Actuators, B, 2017, 242:563-568.

    56. [56]

      LIU R, ZUO L, HUANG X R, LIU S M, YANG G Y, LI S Y, LV C Y. Microchim. Acta, 2019, 186(4):250.

    57. [57]

      GUO M L, CHI J T, LI Y J, WATERHOUSE G I N, AI S Y, HOU J Y, LI X Y. Microchim. Acta, 2020, 187(9):534.

    58. [58]

      GILLIS B S, ARBIEVA Z, GAVIN I M. BMC Genomics, 2012, 13:344.

    59. [59]

      BAIN D, MAITY S, PARAMANIK B, PATRA A. ACS Sustainable Chem. Eng., 2018, 6(2):2334-2343.

    60. [60]

      ECHEVERRIA R, LOPEZ-DE-LUZURIAGA J M, MONGE M, OLMOS M E. Chem. Sci., 2015, 6(3):2022-2026.

    61. [61]

      KARDAR Z S, SHEMIRANI F, ZADMARD R. Microchim. Acta, 2020, 187(1):81.

    62. [62]

      YE C L, WANG Y F, WANG S, WANG Z K. RSC Adv., 2019, 9(9):5037-5044.

    63. [63]

      LIU Y S, LUO S, WU P, MA C H, WU X Y, XU M C, LI W, LIU S X. Anal. Chim. Acta, 2019, 1090:133-142.

    64. [64]

      ZHANG J, CHEN C X, XU X W, WANG X L, YANG X R. Chem. Commun., 2013, 49(26):2691-2693.

    65. [65]

      ZHANG Y, LI M, NIU Q Q, GAO P F, ZHANG G M, DONG C, SHUANG S M. Talanta, 2017, 171:143-151.

    66. [66]

      YANG Y, LEI Y J, ZHANG X R, ZHANG S C. Talanta, 2016, 154:190-196.

    67. [67]

      MAITY D, VYAS G, BHATT M, PAUL P. RSC Adv., 2015, 5(8):6151-6159.

    68. [68]

      WU P, ZHAO T, WANG S L, HOU X D. Nanoscale, 2014, 6(1):43-64.

    69. [69]

      HU Y, LU X M, JIANG X M, WU P. J. Hazard. Mater., 2020, 384:121368.

    70. [70]

      XIE J P, ZHENG Y G, YING J Y. J. Am. Chem. Soc., 2009, 131(3):888-889.

    71. [71]

      ZHANG J R, YUE Y Y, LUO H Q, LI N B. Analyst, 2016, 141(3):1091-1097.

    72. [72]

      PATEL R, BOTHRA S, KUMAR R, CRISPONI G, SAHOO S K. Biosens. Bioelectron., 2018, 102:196-203.

    73. [73]

      ZHANG M H, LIU G H, SONG K, WANG Z Y, ZHAO Q L, LI S J, YE Z F. Chem. Eng. J., 2015, 259:876-884.

    74. [74]

      YANG S H, SUN X H, CHEN Y. Mater. Lett., 2017, 194:5-8.

    75. [75]

      LI C M, HUANG J P, ZHU H L, LIU L L, FENG Y M, HU G, YU X B. Sens. Actuators, B, 2017, 253:275-282.

    76. [76]

      ZHANG Z X, ZHAO D, PANG Y H, HAO J, XIAO X C, HU Y. Curr. Anal. Chem., 2019, 15(5):560-566.

    77. [77]

      CHAIENDOO K, BOONCHIANGMA S, PROMARAK V, NGEONTAE W. Colloid Polym. Sci., 2018, 296(12):1995-2004.

    78. [78]

      AI K L, LIU Y L, LU L H. J. Am. Chem. Soc., 2009, 131(27):9496-9497.

    79. [79]

      QU F, XU X, YOU J M. New J. Chem., 2017, 41(17):9438-9443.

    80. [80]

      LI H, CHEN H Y, LI M X, LU Q J, ZHANG Y Y, YAO S Z. New J. Chem., 2019, 43(14):5423-5428.

    81. [81]

      LIANG B, HAN L. Biosens. Bioelectron., 2020, 148:111825.

    82. [82]

      WANG C, XING K Y, ZHANG G G, YUAN M F, XU S L, LIU D F, CHEN W Y, PENG J, HU S, LAI W H. Food Chem., 2019, 281:91-96.

    83. [83]

      CHENG C, YANG L, ZHONG M., DENG W F, TAN Y M, XIE Q J, YAO S Z. Analyst, 2018, 143(17):4067-4073.

    84. [84]

      CHANDAN H R, VENKATARAMANA M, KURKURI M D, BALAKRISHNA R G. Sens. Actuators, B, 2016, 222:1201-1208.

    85. [85]

      LAGAE-WIENS P R S, ALFA M J, MANICKAM K, KARLOWSKY J A. J. Clin. Microbiol., 2007, 45(10):3478-3479.

    86. [86]

      NANDAKUMAR V, LA BELLE J T, REED J, SHAH M, COCHRAN D, JOSHI L, ALFORD T L. Biosens. Bioelectron., 2008, 24(4):1039-1042.

    87. [87]

      ZHANG P, LIU H, LI X C, MA S Z, MEN S, WEI H, CUI J J, WANG H N. Biosens. Bioelectron., 2017, 87:1044-1049.

    88. [88]

      BANDY T J, BREWER A, BURNS J R, MARTH G, NGUYEN T, STULZ E. Chem. Soc. Rev., 2011, 40(1):138-148.

    89. [89]

      YE Y D, XIA L, XU D D, XING X J, PANG D W, TANG H W. Biosens. Bioelectron., 2016, 85:837-843.

    90. [90]

      ZHANG P, YANG X X, WANG Y, ZHAO N W, XIONG Z H, HUANG C Z. Nanoscale, 2014, 6(4):2261-2269.

  • 加载中
计量
  • PDF下载量:  25
  • 文章访问数:  1315
  • HTML全文浏览量:  269
文章相关
  • 收稿日期:  2020-11-09
  • 修回日期:  2021-01-05
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章