10种野生植物果实对α-淀粉酶和酪氨酸酶的抑制作用及其酚类化合物含量和抗氧化活性研究

田丝竹 李绪文 臧爽 张子微 张寒琦 于永

引用本文: 田丝竹, 李绪文, 臧爽, 张子微, 张寒琦, 于永. 10种野生植物果实对α-淀粉酶和酪氨酸酶的抑制作用及其酚类化合物含量和抗氧化活性研究[J]. 分析化学, 2021, 49(3): 449-459. doi: 10.19756/j.issn.0253-3820.201629 shu
Citation:  TIAN Si-Zhu,  LI Xu-Wen,  ZANG Shuang,  ZHANG Zi-Wei,  ZHANG Han-Qi,  YU Yong. Investigation of α-Amylase and Tyrosinase Inhibitory Activities, Phenolic Compounds, and Antioxidant Activity in Ten Kinds of Wild Fruits[J]. Chinese Journal of Analytical Chemistry, 2021, 49(3): 449-459. doi: 10.19756/j.issn.0253-3820.201629 shu

10种野生植物果实对α-淀粉酶和酪氨酸酶的抑制作用及其酚类化合物含量和抗氧化活性研究

    通讯作者: 于永,E-mail:analchem_JLU@163.com
  • 基金项目:

    吉林省教育厅“十三五”科学技术研究项目(No.2016-409)和吉林省科技发展计划项目(Nos.20180201059SF,20180201027GX)资助。

摘要: 考察了10种可食用野生植物果实对α-淀粉酶和酪氨酸酶的抑制作用,结果表明,山荆子果实提取物对α-淀粉酶的抑制能力最强,其IC50值与常见的α-淀粉酶抑制剂阿卡波糖接近。因此,山荆子果提实取物有望用于治疗非胰岛素依赖型糖尿病。采用1,1-二苯基苦基苯肼(DPPH)法测定了水果的抗氧化活性,采用Folin-Ciocalteu比色法和pH示差法测定总酚含量和总花青素含量,采用高效液相色谱(HPLC)法测定7种酚酸的含量。结果表明,10种野生水果对酪氨酸酶的抑制能力与其总酚含量和抗氧化活性均高度相关。冷冻野生水果中总酚的含量范围为617.3~7447.4 μg/g,其中,8种野生水果显示出高抗氧化能力。新鲜水果和冷冻水果的抗氧化能力之间的显著相关性表明,在液氮中快速冷冻水果并磨粉的保存方法对野生水果的抗氧化活性影响较小。

English


    1. [1]

      CHALISE J P, ACHARYA K, GURUNG N, BHUSAL R P, GURUNG R, SKALKO-Basnet N, BASNET P. Int. J. Food Sci. Nutr., 2010, 61:425-432.

    2. [2]

      KUBOLAJ, SIRIAMORNPUN S, MEESO N. Food Chem., 2011, 126:972-981.

    3. [3]

      LI D, JIANG J, HAN D, YU X, WANG K, ZANG S, LU D, YU A, ZHANG Z. Anal. Chem., 2016, 88(7):3885-3890.

    4. [4]

      RANGKADILOK N, SITTHIMONCHAI S, WORASUTTAYANGKURN L, MAHIDOL C, RUCHIRAWAT M, SATAYAVIVAD J. Food Chem. Toxicol., 2007, 45:328-336.

    5. [5]

      JIANG J, ZANG S, LI D, WANG K, TIAN S, YU A, ZHANG Z. Talanta, 2018, 184:23-28.

    6. [6]

      FU L, XU B T, XU X R, QIN X S, GAN R Y, LI H B. Molecules, 2010, 15:8602-8617.

    7. [7]

      BURGOS G, AMOROS W, MUÑOA L, SOSA P, CAYHUALLA E, SANCHEZ C, DÍZ C, BONIERBALE M. J. Food Compos. Anal., 2013, 30:6-12.

    8. [8]

      MATTILA P, HELLSTROM J. J. Food Compos. Anal., 2007, 20:152-160.

    9. [9]

      PANDEY K B, RIZVI S I. Oxid. Med. Cell. Longev., 2009, 2(5):270-278.

    10. [10]

      PASCUAL-TERESA S, SANCHEZ-BALLESTA M T. Phytochem. Rev., 2007, 7:281-299.

    11. [11]

      GARCIA-ALONSO M, RIMBACH G, SASAI M, NAKAHARA M, MATSUGO S, UCHIDA Y, RIVAS-GONZALO J C, DE PASCUAL-TERESA S. Mol. Nutr. Food Res., 2005, 49:1112-1119.

    12. [12]

      KHODDAMI A, WILKES M A, ROBERTS T H. Molecules, 2013, 18:2328-2375.

    13. [13]

      MATTILA P, KUMPULAINEN J. J. Agric. Food Chem., 2002, 50:3660-3667.

    14. [14]

      LI Yang, ZHANG Shu-Fen, XING Jia-Li, YING Lu, CHENG Hai, ZHENG Rui-Hang, MAO Ling-Yan, LI He-Sheng. Chin. J. Chromatogr., 2020, 38(8):953-960. 李杨, 张书芬, 邢家溧, 应璐, 承海, 郑睿行, 毛玲燕, 李和生. 色谱, 2020, 38(8):953-960.

    15. [15]

      FERNANDES J B, GRIFFITHS D W, BAIN H, FERNANDES F A N. Phytochem. Anal., 1996, 7(5):253-258.

    16. [16]

      LIN Xiao, QIU Tian, ZHANG Xu, HU Xiao-Jian, YANG Yan-Wei, ZHU Ying. Chin. J. Chromatogr., 2020, 38(12):1456-1464. 林潇, 邱天, 张续, 胡小键, 杨艳伟, 朱英. 色谱, 2020, 38(12):1456-1464.

    17. [17]

      TAN Y, CHANG S K C. J. Funct. Foods, 2017, 38:644-655.

    18. [18]

      HO G T, KASE E T, WANGENSTEEN H, BARSETT H. Molecules, 2017, 22(1):90-105.

    19. [19]

      LI Wei-Feng, YAN De-Wen, JIN Yu, LI Hai-Yan, MA Min, WU Zheng-Zhi. Chin. J. Anal. Chem., 2019, 47(11):1732-1741. 李卫峰, 阎德文, 金宇, 李海燕, 马民, 吴正治. 分析化学, 2019, 47(11):1732-1741.

    20. [20]

      JOHNSON M H, LUCIUS A, MEYER T, DE MEJIA E G. J. Agric. Food Chem., 2011, 59(16):8923-8930.

    21. [21]

      GRUSSU D, STEWART D, MCDOUGALL G J. J. Agric. Food Chem., 2011, 59(6):2324-2331.

    22. [22]

      HE M, ZENG J, ZHAI L, LIU Y, WU H, ZHANG R, LI Z, XIA E. Food Res. Int., 2017, 102:156-162.

    23. [23]

      MCDOUGALL G J, SHPIRO F, DOBSON P, SMITH P, BLAKE A, STEWART D. J. Agric. Food Chem., 2005, 53(7):2760-2766.

    24. [24]

      MASAMOTO Y, ANDO H, MURATA Y, SHIMOISHI Y, TADA M, TAKAHATA K. Biosci. Biotechnol. Biochem., 2003, 67(3):631-634.

    25. [25]

      KIM Y J, UYAMA H. Cell. Mol. Life Sci., 2005, 62(15):1707-1723.

    26. [26]

      GAN Zhen-Fei, WANG Lu, GUO Dan, LI Da-Wei. Chin. J. Anal. Chem., 2019, 47(4):613-619. 甘振飞, 汪璐, 郭丹, 李大伟. 分析化学, 2019, 47(4):613-619.

    27. [27]

      KUBO I, KINST-HORI I. J. Agric. Food Chem., 1999, 47(10):4121-4125.

    28. [28]

      MOMTAZ S, MAPUNYA B M, HOUGHTON P J, EDGERLY C, HUSSEIN A, NAIDOO S, LALL N. J. Ethnopharmacol., 2008, 119(3):507-512.

    29. [29]

      SUN L, GUO Y, ZHANG Y, ZHUANG Y. Front. Pharmacol., 2017, 8:104.

    30. [30]

      ZANG S, TIAN S Z, JIANG J, HAN D, YU X, WANG K, LI D, LU D, YU A M, ZHANG Z W. Food Chem., 2017, 221:1221-1225.

    31. [31]

      FOGARASI A L, KUN S, TANKO G, STEFANOVITS-BANYAI E, HEGYESNE-VECSERI B. Food Chem., 2015, 167:1-6.

    32. [32]

      XU H G, LIU X, YAN Q, YUAN F, GAO Y. Food Chem., 2015, 166:50-55.

    33. [33]

      YE X Q, CHEN J C, LIU D H, JIANG P, SHI J, XUE S, WU D, XU J G, KAKUDA Y. Food Chem., 2011, 124:1561-1566.

    34. [34]

      ZADERNOWSKI R, NACZK M, NESTEROWICZ J. J. Agric. Food Chem., 2005, 53:2118-2124.

    35. [35]

      LIM J Y, ISHIGURO K, KUBO I. Phytother Res., 1999, 13(5):371-375.

    36. [36]

      TIAN S, LI X, JIANG J, WANG K, ZHANG H, YU A, ZHANG Z. Anal. Bioanal. Chem., 2019, 411(25):6677-6686.

    37. [37]

      LI A N, LI S, LI H B, XU D P, XU X R, CHEN F. J. Funct. Foods, 2014, 6:319-330.

    38. [38]

      RUFINO M S M, ALVES R E, DE BRITO E S, PÉREZ-JIMÉNEZ J, SAURA-CALIXTO F, MANCINI-FILHO J. Food Chem., 2010, 121:996-1002.

    39. [39]

      CASTAÑEDA-OVANDO A, PACHECO-HERNÁNDEZ M L, PÁEZ-HERNÁNDEZ M E, RODRÍGUEZ J A, GALÁN-VIDAL C A. Food Chem., 2009, 113:859-871.

    40. [40]

      LARSSON S C, BERGKVIST L, WOLK A. Cancer Epidemiol. Biomarkers Prev., 2006, 15(10):1998-2001.

    41. [41]

      HERTOG M G, FESKENS E J, HOLLMAN P C, KATAN M B, KROMHOUT D. Lancet, 1993, 342(8878):1007-1011.

    42. [42]

      FU L, XU B T, XU X R, GAN R Y, ZHANG Y, XIA E Q, LI H B. Food Chem., 2011, 129:345-350.

    43. [43]

      DAZA D L, FUJITA A, GRANATO D, FÁVARO-TRINDADE S C, GENOVESE I M. Food Biosci., 2017, 18:15-21.

    44. [44]

      SHANMUGAM S, BABY J P, CHANDRAN R, THANKARAJAN S, THANGARAJ P. J. Food Sci. Technol., 2016, 53(7):2957-2965.

    45. [45]

      UDDIN N, HASAN M R, HOSSAIN M M, SARKER A, HASAN A N, ISLAM A M, CHOWDHURY M M H, RANA M S. Asian Pac. J. Trop. Biomed., 2014, 4(6):473-479.

    46. [46]

      KOYU H, KAZAN A, DEMIR S, HAZNEDAROGLU M Z, YESIL-CELIKTAS O. Food Chem., 2018, 248:183-191.

    47. [47]

      LOPEZ DE DICASTILLO C, BUSTOS F, VALENZUELA X, LOPEZ-CARBALLO G, VILARINO J M, GALOTTO M J. Food Res. Int., 2017, 102:119-128.

  • 加载中
计量
  • PDF下载量:  10
  • 文章访问数:  1081
  • HTML全文浏览量:  240
文章相关
  • 收稿日期:  2020-10-27
  • 修回日期:  2020-12-20
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章