Citation: LI Ke-Xin,  WU Man-Li,  GAO Huan,  LIU Heng. Determination of Active Polycyclic Aromatic Hydrocarbons Degrading Bacteria Using Flow Cytometry[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(8): 1357-1365. doi: 10.19756/j.issn.0253-3820.201598 shu

Determination of Active Polycyclic Aromatic Hydrocarbons Degrading Bacteria Using Flow Cytometry

  • Corresponding author: WU Man-Li, 447005853@qq.com
  • Received Date: 24 December 2020
    Revised Date: 27 April 2021

    Fund Project: Supported by the National Natural Science Foundation of China (Nos.52070154, 21577109).

  • A method for determination of the number of active polycyclic aromatic hydrocarbons (PAHs)-degrading bacteria using flow cytometry was developed. PAHs degrading bacteria suspension (1×103-1×105 cells/mL) was prepared by using ultra-pure water as dilution. After stained using SG/PI and incubated at 35 ℃ for 10 min in the dark, the number of PAHs-degrading bacteria was determined using flow cytometry. The parameters of flow cytometry were set as follows: the green (FL1) and red (FL3) fluorescent acted as detector and the threshold value was 600; the flow rate of bacteria suspension was 33 mL/min and the counting rate kept below 1000 cells/s. Experimental results showed that there was a good correlation relationship between the results of flow cytometry and the plate counting determination, and the correlation coefficients were 0.9742-0.9962. To determine PAH-active bacteria, the bacteria during the growth phase were sterilized using NaClO that acted as negative control, and the activated bacteria were used as positive control. Both negative and positive bacteria were determined using flow cytometry after stained using SYBR Green I and propidium iodide, and the active and inactive cells regions were respectively classified. Compared to the plate counting method, the flow cytometry for counting bacteria number could greatly reduce determination time and improve the accuracy. This study provided a fast and efficiency method for determination of active bacteria in pollutant degrading systems.
  • 加载中
    1. [1]

      WANG Q L, HOU J Y, YUAN J, WU Y C, LIU W X, LUO Y M, CHRISTIE P. Chemosphere, 2020, 248: 125983.

    2. [2]

      ZAFRA G, ABSALON A E, ANGEL A M, FERNANDEZ F J, CORTES-ESPINOSA D V. Chemosphere, 2017, 172: 120-126.

    3. [3]

    4. [4]

      ACHILLEOS C, BERTHIER F. Food Microbiol., 2017, 65: 149-159.

    5. [5]

    6. [6]

    7. [7]

      SPAETH S, TRAN Q, LIU Z Y, PAD J. Pharmaceut. Sci. Technol., 2018, 72(6): 574-583.

    8. [8]

      CHEN Q L, WANG H, YANG B S, HE F. Ecotoxicol. Environ. Saf., 2014, 102: 93-99.

    9. [9]

      MCGLYNN S E, CHADWICK G L, KEMPES C P, ORPHAN V J. Nature, 2015, 526(7574): 531-535.

    10. [10]

      BLAZEWICZ S J, BARNARD R L, DALY R A, FIRESTONE M K. ISME J., 2013, 7: 2061-2068.

    11. [11]

      GABRIELLI M, TUROLLA A, ANTONELLI M. J. Environ. Manage., 2021, 286: 112151.

    12. [12]

    13. [13]

      EHGARTNER D, HERWIG C, NEUTSCH L. Appl. Microbiol. Biotechnol., 2016, 100(12): 5363-5373.

    14. [14]

    15. [15]

      HAMMES F, BERGER C, KOSTER O, EGLI T. J. Water Supply: Res. Technol.-AQUA, 2010, 59(1): 31-40.

    16. [16]

      CHESWICK R, MOORE G, NOCKER A, HASSARD F, JEFFERSON B, JARVIS P. Environ. Technol. Innovation, 2020, 19: 101032.

    17. [17]

      JIA S Y, JIA R B, ZHANG K F, SUN S H, LU N N, WANG M Q, ZHAO Q H. Environ. Res., 2020, 185: 109417.

    18. [18]

      WU J, CHENG S, CAI M H, WU Y P, LI Y, WU J C, LI A M, LI W T. Water Res., 2018, 145: 354-364.

    19. [19]

      MAAIKE K R, URS V G, PIETRO F, FREDERIK H. Water Res., 2011, 45(3): 1490-1500.

    20. [20]

      HASSANSHAHIAN M, EMTIAZI G, CAPPELLO S. Mar. Pollut. Bull., 2012, 64(1): 7-12.

    21. [21]

    22. [22]

    23. [23]

      WAN Q Q, WEN G, CAO R H, XU X Q, ZHAO H, LI K, WANG J Y, HUANG T L. Water Res., 2020, 173: 115553.

    24. [24]

    25. [25]

      RABODONIRINA S, RASOLOMAMPIANINA R, KRIER F, DRIDER D, MERHABY D, NET S, OUDDANE B. J. Environ. Manage., 2019, 232: 1-7.

    26. [26]

      JIANG R H, WU X X, XIAO Y Q, KONG D K, LI Y, WANG H Q. J. Hazard. Mater., 2021, 403: 123707.

    27. [27]

    28. [28]

      WEI K, YIN H, PENG H, LIU Z H, LU G N, DANG Z. Chemosphere, 2017, 178: 80-87.

    29. [29]

      GAO J, YE J S, MA J W, TANG L T, HUANG J. J. Hazard. Mater., 2014, 276: 112-119.

  • 加载中
    1. [1]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    2. [2]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    3. [3]

      Di Yang Jiayi Wei Hong Zhai Xin Wang Taiming Sun Haole Song Haiyan Wang . Rapid Detection of SARS-CoV-2 Using an Innovative “Magic Strip”. University Chemistry, 2024, 39(4): 373-381. doi: 10.3866/PKU.DXHX202312023

    4. [4]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    5. [5]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    6. [6]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    7. [7]

      Jinwang Wu Qijing Xie Chengliang Zhang Haifeng Shi . 自旋极化增强ZnFe1.2Co0.8O4/BiVO4 S型异质结光催化性能降解四环素. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-. doi: 10.1016/j.actphy.2025.100050

    8. [8]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    9. [9]

      Lijuan Wang Yuping Ning Jian Li Sha Luo Xiongfei Luo Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017

    10. [10]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    11. [11]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    12. [12]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    13. [13]

      Menglan WeiXiaoxia OuYimeng WangMengyuan ZhangFei TengKaixuan Wang . S-scheme heterojunction g-C3N4/Bi2WO6 highly efficient degradation of levofloxacin: performance, mechanism and degradation pathway. Acta Physico-Chimica Sinica, 2025, 41(9): 100105-0. doi: 10.1016/j.actphy.2025.100105

    14. [14]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    15. [15]

      Pengcheng Yan Peng Wang Jing Huang Zhao Mo Li Xu Yun Chen Yu Zhang Zhichong Qi Hui Xu Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047

    16. [16]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    17. [17]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    18. [18]

      Lijun Zhou Dongmei Wang Jiameng Wang Tongjie Yao Mei Qi Yin Kong Yan Song . Teaching Case Design of “Degradation and Aging” as an Ideological and Political Demonstration Course. University Chemistry, 2025, 40(4): 80-86. doi: 10.12461/PKU.DXHX202405113

    19. [19]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    20. [20]

      Minglei SunZhong-Yong Yuan . Valorization strategies for electrodegradation of nitrogenous wastes in sewage. Acta Physico-Chimica Sinica, 2025, 41(9): 100108-0. doi: 10.1016/j.actphy.2025.100108

Metrics
  • PDF Downloads(11)
  • Abstract views(1546)
  • HTML views(103)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return