基于铜基金属有机框架的液栅型石墨烯晶体管高灵敏检测葡萄糖

陶甜 叶嵩 马明宇 高难 蔡志伟 刘旭 常钢 何云斌

引用本文: 陶甜, 叶嵩, 马明宇, 高难, 蔡志伟, 刘旭, 常钢, 何云斌. 基于铜基金属有机框架的液栅型石墨烯晶体管高灵敏检测葡萄糖[J]. 分析化学, 2021, 49(3): 387-396. doi: 10.19756/j.issn.0253-3820.201594 shu
Citation:  TAO Tian,  YE Song,  MA Ming-Yu,  GAO Nan,  CAI Zhi-Wei,  LIU Xu,  CHANG Gang,  HE Yun-Bin. Highly Sensitive Detection of Glucose Using Solution-gated Graphene Transistor Based on Copper-Metal Organic Framework[J]. Chinese Journal of Analytical Chemistry, 2021, 49(3): 387-396. doi: 10.19756/j.issn.0253-3820.201594 shu

基于铜基金属有机框架的液栅型石墨烯晶体管高灵敏检测葡萄糖

    通讯作者: 常钢,E-mail:changgang@hubu.edu.cn; 何云斌,E-mail:ybhe@hubu.edu.cn
  • 基金项目:

    国家自然科学基金项目(Nos.51672074,11774082,11975093)、湖北省自然科学基金项目(No.2019CFA006)和武汉市应用基金前沿项目(No.201801041011287)资助。#共同第一作者

摘要: 将金属有机框架(Metal-organic frameworks,MOFs)材料的电催化活性和液栅型石墨烯晶体管(Solution-gated graphene transistor,SGGT)的信号放大作用结合,构建了一种新型SGGT无酶葡萄糖传感器。以均苯三甲酸(BTC)为有机配体,采用溶剂热法合成铜基MOF材料(Cu-BTC),利用Nafion膜将Cu-BTC材料固定到玻碳电极上,并作为栅极,以单层石墨烯作为晶体管沟道。此传感器的传感机理是基于葡萄糖在修饰有Cu-BTC的栅电极上发生电化学反应,引起施加于SGGT的有效栅电压的变化,从而改变了沟道载流子浓度和沟道电流。由于Cu-BTC对葡萄糖良好的电催化活性及SGGT的高灵敏度,Cu-BTC修饰的SGGT传感器对葡萄糖表现出优异的传感性能,线性范围为1 nmol/L~40 mmol/L,检出限低至1 nmol/L,优于大多数传统葡萄糖检测方法。同时,此传感器对汗液和血液中的主要成分(如尿素、乳酸、多巴胺、抗坏血酸、尿酸等)表现出较好的抗干扰性能,在长期重复实验中表现出良好的稳定性,并成功应用于人体汗液中葡萄糖的检测。Cu-BTC修饰的SGGT传感器有望应用于糖尿病治疗和临床监测中的葡萄糖无酶无创检测。

English


    1. [1]

      WILD S, ROGLIC G, GREEN A, SICREE R, KING H. Diabetes Care, 2014, 27(5):1047-1053.

    2. [2]

      IOANNOU G N, BRYSON C L, Boyko E J. J. Diabetes Complicat., 2007, 21(6):363-370.

    3. [3]

      KVIST P H, IBURG T, AALBAEK B, GERSTENBERG M, SCHOIER C, KAASTRUP P, BUCH-RASMUSSEN T, HASSELAGER E, JENSEN H E. Diabetes Technol. Ther., 2006, 8(5):546-559.

    4. [4]

      WILSON A M, WORK T M, BUSHWAY A A, BUSHWAY R J. J. Food Sci., 2010, 46(1):300-301.

    5. [5]

      PICKUP J C, HUSSAIN F, EVANS N D, ROLINSKI O J, BIRCH D J S. Biosens. Bioelectron., 2005, 20(12):2555-2565.

    6. [6]

      ENEJDER A M K, SCECINA T G, OH J, HUNTER M, SHIH W C, SASIC S, HOROWITZ G L, FELD M S. J. Biomed. Opt., 2005, 10(3):031114.

    7. [7]

      MALMSTADT H V, HADJIIOANNOU S I. Anal. Chem., 1962, 34(4):452-455.

    8. [8]

      CHEN W, QIN S Q, ZHANG X A, ZHANG S, FANG J Y, WANG G, WANG C C, WANG L, CHANG S L. Carbon, 2014, 77:1090-1094.

    9. [9]

      QUHE R G, LIU J C, WU J X, YANG J, WANG Y Y, LI Q H, LI T R, GUO Y, YANG J B, PENG H L, LEI M, LU J. Nanoscale, 2019, 11(2):532-540.

    10. [10]

      JIN Yan, SHANG Zhao-Jiang, SHAO Ke, JU Jia-Qi. J. Technol., 2018, 18(4):313-316. 金妍, 商兆江, 邵可, 居家奇. 应用技术学报, 2018, 18(4):313-316.

    11. [11]

      ZHU Hong-Wei, WANG Hao, ZHANG Zhong-Wei, WANG Guo-Dong, ZHANG Ying, SHI Feng. Transducer Microsyst. Technol., 2019, 38(3):71-74. 朱红伟, 王昊, 张中卫, 王国东, 张影, 石峰. 传感器与微系统, 2019, 38(3):71-74.

    12. [12]

      ZHANG M, LIAO C Z, MAK C H, YOU P, MAK C L, YAN F. Sci. Rep., 2015, 5:8311.

    13. [13]

      XIONG C, ZHANG T F, KONG W Y, ZHANG Z X, QU H, CHEN W, WANG Y B, LUO L B, ZHENG L. Biosens. Bioelectron., 2018, 101, 21-28.

    14. [14]

      ZHU Y W, MURALI S, CAI W W, LI X S, SUK J W, POTTS J R, RUOFF R S. Adv. Mater., 2010, 22(35):3906-3924.

    15. [15]

      WANG X T, CUI Y, LI T, LEI M, LI J B, WEI Z M. Adv. Opt. Mater., 2019, 7(3):1801274.

    16. [16]

      ZHANG M, LIAO C Z, YAO Y L, LIU Z K, GONG F F, YAN F. Adv. Funct. Mater., 2013, 24(7):978-985.

    17. [17]

      ZHENG Y, ZHENG S S, XUE H G, PANG H. Adv. Funct. Mater., 2018, 28(47):1804950.

    18. [18]

      XI K, CAO S, PENG X Y, DUCATI C, KUMAR R V, CHEETHAM A K. Chem. Commun., 2013, 49(22):2192-2194.

    19. [19]

      ROSI N L, KIM J, EDDAOUDI M, CHEN B L, O'KEEFFE M, YAGHI O M. J. Am. Chem. Soc., 2005, 127(5):1504-1518.

    20. [20]

      MUELLER U, SCHUBERT M, TEICH F, PUETTER H, SCHIERLE-ARNDT K, PASTRÉ J. J. Mater. Chem., 2006, 16(23):626-636.

    21. [21]

      WANG Ting-Ting, ZHANG Jie, WANG Shen-Shuai, WANG Xiu-Yun. Chin. J. Anal. Chem., 2019, 47(7):1021-1028. 王婷婷, 张杰, 王沈帅, 王秀云. 分析化学, 2019, 47(7):1021-1028.

    22. [22]

      MOROZAN A, JAOUEN F. Energy Environ. Sci., 2012, 5:9269-9290.

    23. [23]

      LIANG X L, SPERLING B A, CALIZO I, CHENG G J, HACKER C A, ZHANG Q, OBENG Y, YAN K, PENG H L, LI Q L, ZHU X X, YUAN H, WALKER A R H, LIU Z F, PENG L M, RICHTER C A. ACS Nano, 2011, 5(11):9144-9153.

    24. [24]

      DRENCHEV N, IVANOVA E, MIHAYLOV M, HADJIIVANOV K. Phys. Chem. Chem. Phys., 2010, 12(24):6423-6427.

    25. [25]

      DECOSTEJ B, PETERSON G W, SCHINDLER B J, KILLOPS K L, BROWE M A, MAHLE J J. J. Mater. Chem. A, 2013, 1(38):11922-11932.

    26. [26]

      TAN H L, MA C J, GAO L, LI Q, SONG Y H, XU F G, WANG T, WANG L. Chem. Eur. J., 2014, 20(49):16377-16383.

    27. [27]

      SCHLICHTE K, KRATZKE T, KASKEL S. Microporous Mesoporous Mater., 2004, 73(1-2):81-88.

    28. [28]

      SUN B C, KAYAL S, CHAKRABORTY A. Energy, 2014, 76:419-427.

    29. [29]

      ZEINALI S, HOMAYOONNIA S, HOMAYOONNIA G. Sens. Actuators, B, 2019, 278:153-164.

    30. [30]

      HESS L H, HAUF M V, SEIFERT M, SPECK F, SEYLLER T, STUTZMANN M, SHARP I D, GARRIDO J A. Appl. Phys. Lett., 2011, 99(3):033503.

    31. [31]

      YAVARI F, KRITZINGER C, GAIRE C, SONG L, GULAPALLI H, BORCA-TASCIUC T, AJAYAN P M, KORATKAR N. Small, 2010, 6(22):2535-2538.

    32. [32]

      YANKOWITZ M, XUE J M, CORMODE D, SANCHEZ-YAMAGISHI J D, WATANABLE K, TANIGUCHI T, JARILLO-HERRERO P, JACQUOD P, Leroy B J. Nat. Phys., 2012, 8:382-386.

    33. [33]

      MA M Y, ZHOU Y, LI J H, GE Z Q, HE H P, TAO T, CAI Z W, CHANG G, HE Y B. Analyst, 2020, 145:887-896.

    34. [34]

      ZHOU Y, MA M Y, HE H P, CAI Z W, GAO N, HE C H, CHANG G, HE Y B. Biosens. Bioelectron., 2019, 146(15):111751.

    35. [35]

      CAO Y, WANG L N, SHEN C, WANG C Y, HU X Y, WANG G X. Sens. Actuators, B, 2019, 283:487-494.

    36. [36]

      ZHANG L, YE C, LI X, DING Y R, LIANG H B, ZHAO G Y, WANG Y. Nano-Micro Lett., 2018, 10:28.

    37. [37]

      WU H X, CAO W M, LI Y, LIU G, WEN Y, YANG H F, YANG S P. Electrochim. Acta, 2010, 55(11):3734-3740.

    38. [38]

      LUO J, JIANG S S, ZHANG H Y, JIANG J Q, LIU X Y. Anal. Chim. Acta, 2012, 709:47-53.

    39. [39]

      WANG G F, WEI Y, ZHANG W, ZHANG X J, FANG B, WANG L. Microchim. Acta, 2010, 168:87-92.

    40. [40]

      MIRANDA A, LORKE A. Mater. Res. Lett., 2018, 6:49-54.

    41. [41]

      LEE H, SONG C, HONG Y S, KIM M S, CHO H R, KANG T, SHIN K, CHOI S H, HYEON T, KIM D H. Sci. Adv., 2017, 3(3):e1601314.

    42. [42]

      LU M X, DENG Y J, LI Y C, LI T B, XU J, CHEN S W, WANG J Y. Anal. Chim. Acta, 2020, 1110:35-43.

    43. [43]

      DING J Y, ZHONG L, WANG X, CHAI L L, WANG Y L, JIANG M H, LI T T, HU Y, QIAN J J, HUANG S M. Sens. Actuators, B, 2019, 306:127551.

    44. [44]

      LI Y, XIE M W, ZHANG X P, LIU Q, LIN D M, XU C G, XIE F Y, SUN X P. Sens. Actuators, B, 2019, 278:126-132.

    45. [45]

      WANG F, CHEN X Q, CHEN L, YANG J L, WANG Q X. Mater. Sci. Eng. C, 2019, 96:41-50.

    46. [46]

      XIAO X L, PENG S H, WANG C, CHENG D, LI N, DONG Y L, LI Q H, WEI D G, LIU P, XIE Z Z, QU D Y, LI X. J. Electroanal. Chem., 2019, 841:94-100.

    47. [47]

      ZHANG X, XU Y D, YE B X. J. Alloys Compd., 2018, 76:651-656.

    48. [48]

      SHU Y, YAN Y, CHEN J Y, XU Q, PANG H, HU X Y. ACS Appl. Mater. Interfaces, 2017, 9(27):22342-22349.

    49. [49]

      ZHANG X, LUO J S, TANG P Y, MORANTE J R, ARBIOL J, XU C L, LI Q F, FRANSAER J. Sens. Actuators, B, 2018, 254:272-281.

  • 加载中
计量
  • PDF下载量:  33
  • 文章访问数:  1293
  • HTML全文浏览量:  257
文章相关
  • 收稿日期:  2020-10-09
  • 修回日期:  2021-01-06
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章