贵金属纳米粒子与水凝胶复合材料的制备及其在分析化学领域的应用进展

寿雯 杨双婷 王悦靓 郭隆华

引用本文: 寿雯, 杨双婷, 王悦靓, 郭隆华. 贵金属纳米粒子与水凝胶复合材料的制备及其在分析化学领域的应用进展[J]. 分析化学, 2021, 49(5): 676-685. doi: 10.19756/j.issn.0253-3820.201536 shu
Citation:  SHOU Wen,  YANG Shuang-Ting,  WANG Yue-Liang,  GUO Long-Hua. Preparation of Noble Metal Nanoparticles and Hydrogel Composite Materials and Their Application in Analytical Chemistry[J]. Chinese Journal of Analytical Chemistry, 2021, 49(5): 676-685. doi: 10.19756/j.issn.0253-3820.201536 shu

贵金属纳米粒子与水凝胶复合材料的制备及其在分析化学领域的应用进展

    通讯作者: 王悦靓,E-mail:wangyuel@zjxu.edu.cn; 郭隆华,E-mail:guolh@fzu.edu.cn
  • 基金项目:

    国家自然科学基金项目(No.22074054)、浙江省重点研发计划项目(No.2020C02022)、浙江省自然科学基金项目(No.LQ20B050004)及青海省重点研发计划项目(No.2020-QY-223)资助。

摘要: 贵金属纳米材料由于其独特的光电化学性能,在分析化学领域应用广泛。但是,纳米粒子在水溶液中不稳定,这在一定程度上限制了贵金属纳米材料的发展,水凝胶载体能够很好地解决此问题。水凝胶具有优异的机械性能、良好的生物相容性和易于改性等特点,在稳定纳米材料的同时,能够提升纳米材料的性质,因此,贵金属纳米粒子与水凝胶复合材料的研究逐渐增多。本文主要对近五年贵金属纳米粒子与水凝胶复合材料的制备及其在分析化学领域的应用进展进行了评述,分析了贵金属纳米粒子与水凝胶的作用机制以及应用优势,并对其未来的发展趋势进行了展望。

English


    1. [1]

      CHEN Y, LAI Z C, ZHANG X, FAN Z X, HE Q Y, TAN C L, ZHANG H. Nat. Rev. Chem., 2020, 4(5):243-256.

    2. [2]

      PIRZADA M, ALTINTAS Z. Sensors, 2019, 19(23):5311.

    3. [3]

      SHARMA D, HUSSAIN C M. Arab. J. Chem., 2020, 13(1):3319-3343.

    4. [4]

      XU J, HU Y X, WANG S N, MA X, GUO J H. Analyst, 2020, 145(6):2058-2069.

    5. [5]

      THAKUR S, CHAUDHARY J, KUMAR V, THAKUR V K. J. Environ. Manage., 2019, 238:210-223.

    6. [6]

      MA Xiao-Ming, SUN Mi, LIN Yue, LIU Yin-Jin, LUO Fang, GUO Long-Hua, QIU Bin, LIN Zhen-Yu, CHEN Guo-Nan. Chin. J. Anal. Chem., 2018, 46(1):1-10. 马小明, 孙密, 林悦, 刘银金, 罗芳, 郭隆华, 邱彬, 林振宇, 陈国南. 分析化学, 2018, 46(1):1-10.

    7. [7]

      BASSI B, ALBINI B, D'AGOSTINO A, DACARRO G, PALLAVICINI P, GALINETTO P, TAGLIETTI A. Nanotechnology, 2019, 30(2):025302.

    8. [8]

      ZHAO Y, ZHOU H M, ZHANG S J, XU J H. Methods Appl. Fluoresc., 2020, 8(1):012001.

    9. [9]

      KIZLING M, DZWONEK M, WIECKOWSKA A, BILEWICZ R. Curr. Opin. Electrochem., 2018, 12:113-120.

    10. [10]

      MA X M, HE S, QIU B, LUO F, GUO L H, LIN Z Y. ACS Sens., 2019, 4(4):782-791.

    11. [11]

      ZHANG Z Y, WANG H, CHEN Z P, WANG X Y, CHOO J, CHEN L X. Biosens. Bioelectron., 2018, 114:52-65.

    12. [12]

      WU Y Y, HUANG P C, WU F Y. Food Chem., 2020, 304:125377.

    13. [13]

      MA X M, CHEN Z T, KANNAN P, LIN Z Y, QIU B, GUO L H. Anal. Chem., 2016, 88(6):3227-3234.

    14. [14]

      XU S H, OUYANG W J, XIE P S, LIN Y, QIN B, LIN Z Y, CHEN G N, GUO L H. Anal. Chem., 2017, 89(3):1617-1623.

    15. [15]

      GUO L H, LIN Y, CHEN C, QIU B, LIN Z Y, CHEN G N. Chem. Commun., 2016, 52(76):11347-11350.

    16. [16]

      LIN Y, XU S H, YANG J, HUANG Y J, CHEN Z T, QIU B, LIN Z Y, CHEN G N, GUO L H. Sens. Actuators, B, 2018, 267:502-509.

    17. [17]

      TAO Y Z, DANDAPAT A, CHEN L M, HUANG Y J, SASSON Y, LIN Z Y, ZHANG J W, GUO L H, CHEN T. Langmuir, 2016, 32(34):8557-8564.

    18. [18]

      PARDO-YISSAR V, GABAI R, SHIPWAY A N, BOURENKO T, WILLNER I. Adv. Mater., 2001, 13(17):1320-1323.

    19. [19]

      AMOLI-DIVA M, SADIGHI-BONABI R, POURGHAZI K. Mat. Sci. Eng., 2017, 76:242-248.

    20. [20]

      ZHAO F L, YAO D, GUO R W, DENG L D, DONG A J, ZHANG J H. Nanomaterials, 2015, 5(4):2054-2130.

    21. [21]

      ARAFA Mona G, EL-KASED R F, ELMAZAR M M. Sci. Rep., 2018, 8:13674.

    22. [22]

      KIM Y H, KIM D J, LEE S, KIM D H, PARK S G, KIM S H. Small, 2019, 15(52):1905076.

    23. [23]

      EGUCHI Y, KATO T, TANAKA T, MARUYAMA T. Chem. Commun., 2017, 53(43):5802-5805.

    24. [24]

      TENORIO F S, MONTANHEIRO T L D, SANTOS A M I, SILVA M D S, LEMES A P, TADA D B. J. Appl. Polym. Sci., 2021, 138(6):e49819.

    25. [25]

      SZUCS R, BALOGH-WEISER D, SANTA-BELL E, TOTH-SZELES E, VARGA T, KONYA Z, POPPE L, LAGZI I. RSC Adv., 2019, 9(16):9193-9197.

    26. [26]

      BAJPAI S K, KUMARI M. Int. J. Biol. Macromol., 2015, 80:177-188.

    27. [27]

      THIES S, SIMON P, ZELENINA I, MERTENS L, PICH A. Small, 2018, 14(51):1803589.

    28. [28]

      SAHA S, PAL A, KUNDU S, BASU S, PAL T. Langmuir, 2010, 26(4):2885-2893.

    29. [29]

      YAO M H, YANG J, ZHAO D H, XIA R X, JIN R M, ZHAO Y D, LIU B. Photochem. Photobiol. Sci., 2016, 15(2):181-186.

    30. [30]

      NOLAN H, SUN D, FALZON B G, CHAKRABARTI S, PADMANABA D B, MAGUIRE P, MARIOTTI D, YU T, JONES D, ANDREWS G, SUN D. Plasma Process. Polym., 2018, 15(11):1800112.

    31. [31]

      LUSTOSA A K M F, OLIVEIRA A C D, QUELEMES P V, PLACIDO A, DA SILVA F V, OLIVEIRA I S, DE ALMEIDA M P, AMORIM A D N, DELERUE-MATOS C, DE OLIVEIRA R D M, DA SILVA D A, EATON P, LEITE J R D D. Int. J. Mol. Sci., 2017, 18(11):2399.

    32. [32]

      GRUBJESIC S, RINGSTRAND B S, JUNGJOHANN K L, BROMBOSZ S M, SEIFERT S, FIRESTONE M A. Nanoscale, 2016, 8(5):2601-2612.

    33. [33]

      WU Z, CHEN X, LI J Y, PAN C Y, HONG C Y. RSC Adv., 2016, 6(54):48927-48932.

    34. [34]

      GHOREISHIAN S M, KANG S M, RAJU G S R, NOROUZI M, JANG S C, YUN H J, LIM S T, HAN Y K, ROH C, HUH Y S. Chem. Eng. J., 2019, 360:1390-1406.

    35. [35]

      ZHU C H, HAI Z B, CUI C H, LI H H, CHEN J F, YU S H. Small, 2012, 8(6):930-936.

    36. [36]

      LI Y, WANG Z X, SUN L, LIU L Q, XU C L, KUANG H. TrAC-Trends Anal. Chem., 2019, 113:74-83.

    37. [37]

      LIU B, ZHUANG J Y, WEI G. Environ. Sci.:Nano, 2020, 7(8):2195-2213.

    38. [38]

      KOMATSU T, MAEKI M, ISHIDA A, TANI H, TOKESHI M. ACS Sens., 2020, 5(5):1287-1294.

    39. [39]

      HUANG Y S, MA Y L, CHEN Y H, WU X M, FANG L T, ZHU Z, YANG C Y. Anal. Chem., 2014, 86(22):11434-11439.

    40. [40]

      HUANG Y S, FANG L T, ZHU Z, MA Y L, ZHOU L J, CHEN X, XU D M, YANG C Y. Biosens. Bioelectron., 2016, 85:496-502.

    41. [41]

      HUANG Y S, WU X M, TIAN T, ZHU Z, LIN H, YANG C Y. Sci. China:Chem., 2017, 60(2):293-298.

    42. [42]

      PELLAS V, HU D, MAZOUZI Y, MIMOUN Y, BLANCHARD J, GUIBERT C, SALMAIN M, BOUJDAY S. Biosensors-Basel, 2020, 10(10):146.

    43. [43]

      LIU D L, FANG L L, ZHOU F, LI H L, ZHANG T, LI C C, CAI W P, DENG Z X, LI L B, LI Y. Adv. Funct. Mater., 2018, 28(18):1707392.

    44. [44]

      POURREZA N, GHOMI M. Microchim. Acta, 2020, 187(2):133.

    45. [45]

      INAMDAR S, PUSHPAVANAM K, LENTZ J M, BUES M, ANAND A, REGE K. ACS Appl. Mater. Interfaces, 2018, 10(4):3274-3281.

    46. [46]

      FU H P, CHEN J M, CHEN L J, ZHU X, CHEN Z L, QIU B, LIN Z Y, GUO L H, CHEN G N. Microchim. Acta, 2019, 186(2):64.

    47. [47]

      WANG C, WONG K W, WANG Q, ZHOU Y F, TANG C Y, FAN M K, MEI J, LAU W M. Talanta, 2019, 191:241-247.

    48. [48]

      ZHOU X, ZHAO Z H, HE Y, YE Y, ZHOU J, ZHANG J, OUYANG Q, TANG B, WANG X G. Cellulose, 2018, 25(7):3941-3953.

    49. [49]

      OUYANG L, ZHU L H, RUAN Y F, TANG H Q. J. Mater. Chem. C, 2015, 3(29):7575-7582.

    50. [50]

      RAO V K, GHILDIYAL P, RADHAKRISHNAN T P. J. Phys. Chem. C, 2017, 121(2):1339-1348.

    51. [51]

      MANIKAS A C, PAPA A, CAUSA F, ROMEO G, NETTI P A. RSC Adv., 2015, 5(18):13507-13512.

    52. [52]

      MITOMO H, HORIE K, MATSUO Y, NIIKURA K, TANI T, NAYA M, IJIRO K. Adv. Opt. Mater., 2016, 4(2):259-263.

    53. [53]

      KOTLAREK D, FOSSATI S, VENUGOPALAN P, QUILIS N G, SLABY J, HOMOLA J, LEQUEUX M, AMIARD F, DE LA CHAPELLE M L, JONAS Ul, DOSTALEK J. Nanoscale, 2020, 12(17):9756-9768.

    54. [54]

      QUINN A, YOU Y H, MCSHANE M J. Sensors, 2019, 19(16):3521.

    55. [55]

      KIM D J, PARK S G, KIM D H, KIM S H. Small, 2018, 14(40):1802520.

    56. [56]

      ZHAO J L, HU X J, HUANG X, JIN X, KOH K, CHEN H X. Colloids Surf., B, 2019, 183:110404.

    57. [57]

      OKESOLA B O, SURAVARAM S K, PARKIN A, SMITH D K. Angew. Chem., Int. Ed., 2016, 55(1):183-187.

    58. [58]

      YANG G J, DING J L, YANG B G, WANG X J, GU C, GUAN D H, YU Y, ZHANG Y M, ZHANG S X A. J. Mater. Chem. C, 2019, 7(31):9481-9486.

    59. [59]

      CUI H F, ZHANG T T, LV Q Y, SONG X J, ZHAI X J, WANG G G. Biosens. Bioelectron., 2019, 141:111452.

    60. [60]

      WANG H Q, MA Z F. Microchim. Acta, 2017, 184(4):1045-1050.

    61. [61]

      KOWALCZYK A, WAGNER B, KARBARZ M, NOWICKA A M. Sens. Actuators, B, 2015, 208:220-227.

    62. [62]

      LOU J Z, STOWERS R, NAM S, XIA Y, CHAUDHURI O. Biomaterials, 2018, 154:213-222.

    63. [63]

      JIANG X Y, WANG H J, YUAN R, CHAI Y Q. Anal. Chem., 2018, 90(14):8462-8469.

    64. [64]

      GE M H, SUN J J, CHEN M L, TIAN J J, YIN H C, YIN J. Anal. Bioanal. Chem., 2020, 412(8):1915-1923.

    65. [65]

      KIM M, KWON J E, LEE K, KOH W G. Biofabrication, 2018, 10(3):035002.

    66. [66]

      ROY S, BANERJEE A. Soft Matter, 2011, 7(11):5300-5308.

    67. [67]

      LI J, YU J T, HUANG Y S, ZHAO H R, TIAN L L. ACS Appl. Mater. Interfaces, 2018, 10(31):26075-26083.

    68. [68]

      DU Q Q, QU F, MAO B B, ZHU S Y, YOU J M. New J. Chem., 2016, 40(10):8459-8464.

    69. [69]

      LEE I H, AHN B, LEE J M, LEE C S, JUNG Y. Analyst, 2015, 140(10):3543-3550.

  • 加载中
计量
  • PDF下载量:  7
  • 文章访问数:  1109
  • HTML全文浏览量:  236
文章相关
  • 收稿日期:  2020-09-02
  • 修回日期:  2021-02-04
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章