夹心式碳纳米管/金复合材料电化学适配体传感器的构建及其对双酚A的检测性能

李海玉 李文雅 王婉 吕庆 王志娟 张庆

引用本文: 李海玉, 李文雅, 王婉, 吕庆, 王志娟, 张庆. 夹心式碳纳米管/金复合材料电化学适配体传感器的构建及其对双酚A的检测性能[J]. 分析化学, 2021, 49(3): 415-423. doi: 10.19756/j.issn.0253-3820.201465 shu
Citation:  LI Hai-Yu,  LI Wen-Ya,  WANG Wan,  LYU Qing,  WANG Zhi-Juan,  ZHANG Qing. Construction of Electrochemical Aptasensor Based on Sandwich Carbon Nanotube/Gold Film for Detection of Bisphenol A[J]. Chinese Journal of Analytical Chemistry, 2021, 49(3): 415-423. doi: 10.19756/j.issn.0253-3820.201465 shu

夹心式碳纳米管/金复合材料电化学适配体传感器的构建及其对双酚A的检测性能

    通讯作者: 张庆,E-mail:njuzhangqing@caiq.org.cn
  • 基金项目:

    国家重点研发计划(No.2016YFF0203703)和市场监管业务综合保障经费-工业及消费品质量安全保障项目资助。

摘要: 研制了一种用于检测双酚A的电化学适配体传感器。在金膜工作电极表面修饰溅射镀金的多壁碳纳米管,形成夹心式结构,能够有效提高电极表面积和电子传输。3,3',5,5'-四甲基联苯胺(TMB)作为染料信号分子结合到固定于电极表面的双酚A适配体中,形成复合物(ssDNA-TMB)。当双酚A存在时,其与适配体特异性结合,引起适配体构象发生变化,ssDNA-TMB中的TMB分子被释放出来,导致电极表面的TMB电化学信号强度降低。采用差分脉冲伏安法进行测试,在0.05~500 nmol/L浓度范围内,双酚A的浓度与TMB的电化学信号呈线性关系,检出限为43 pmol/L。实际塑料样品中双酚A的加标回收率在88.9%~110.2%之间,相对标准偏差在2.7%~9.0%之间。本方法简便高效,适用于现场检测,在消费品安全监管中具有良好的应用前景。

English


    1. [1]

      RAGAVAN K V, RASTOGI N K, THAKUR M S. TrAC-Trends Anal. Chem., 2013, 52(2):248-260.

    2. [2]

      VANDENBERG L N, HAUSER R, MARCUS M, OLEA N, WELSHONS W V. Reprod. Toxicol., 2007, 24:139-177.

    3. [3]

      CHEN Y, FANG J Z, REN L, FAN R F, ZHANG J Q, LIU G H, ZHOU L, CHEN D Y, YU Y X, LU S Y. Environ. Pollut., 2018, 238:299-305.

    4. [4]

      FUHRMAN V F, TAL A, ARNON S. J. Hazard. Mater., 2015, 286:589-611.

    5. [5]

      MANDRAH K, SATYANARAYANA G N V, ROY S K. J. Chromatogr. A, 2017, 1528:10-17.

    6. [6]

      OWCZAREK K, KUBICA P, KUDLAK B, RUTKOWSKA A, KONIECZNA A, RACHON D, NAMIESNIK J, WASIK A. Sci. Total Environ., 2018, 628-629:1362-1368.

    7. [7]

      MEI S R, WU D, JIANG M, LU B, LIM J M, ZHOU Y K, LEE Y I. Microchem. J., 2011, 98(1):150-155.

    8. [8]

      MARCHESINI G R, MEULENBERG E, HAASNOOT W, IRTH H. Anal. Chim. Acta, 2005, 528(1):37-45.

    9. [9]

      VIDAL R B, IBANEZ G A, ESCANDAR G M. Talanta, 2015, 143:162-168.

    10. [10]

      VARMIRA K, SAED-MOCHESHI M, JALALVAND A R. Sensing Bio-Sensing Res., 2017, 15:17-33.

    11. [11]

      NGUYEN V T, KWON Y S, GU M B. Curr. Opin. Biotechnol., 2017, 45:15-23.

    12. [12]

      HE Cai-Mei, FENG Rong-Rong, LI Xiao-Xia. Chin. J. Anal. Lab., 2017, 36(11):1306-1309. 贺彩梅, 冯荣荣, 李晓霞. 分析试验室, 2017, 36(11):1306-1309.

    13. [13]

      YUAN Min, QIAN Shi-Quan, CAO Hui, XU Fei, YE Tai, YU Jin-Song, GUO Wen, WU Jia-Ying, A Ti-kan·WU-siman. Chin. J. Anal. Chem., 2020, 48(12):1701-1708. 袁敏, 钱世权, 曹慧, 徐斐, 叶泰, 于劲松, 郭文, 吴嘉颖, 阿提坎·吾斯曼. 分析化学, 2020, 48(12):1701-1708.

    14. [14]

      HUANG Y, LI X F, ZHENG S N. Talanta, 2016, 160:241-246.

    15. [15]

      HE Zu-Yu, LI Pu-Wang, ZHOU Chuang, WANG Chao, LV Ming-Zhe, SONG Shu-Hui, LIU Yun-Hao, YANG Zi-Ming. J. Instrum. Anal., 2020, 39(12):1508-1514. 何祖宇, 李普旺, 周闯, 王超, 吕明哲, 宋书会, 刘运浩, 杨子明. 分析测试学报, 2020, 39(12):1508-1514.

    16. [16]

      ALKASIR R S J, GANESANA M, WON Y H, STANCIU L, ANDREESCU S. Biosens. Bioelectron., 2010, 26:43-49.

    17. [17]

      XU J Y, LI Y, BIE J X, JIANG W, GUO J J, LUO Y L, SHEN F, SUN C Y. Microchim. Acta, 2015, 182:2131-2138.

    18. [18]

      BEIRANVAND Z S, ABBASI A R, DEHDASHTIAN S, KARIMI Z, AZADBAKHT A. Anal. Biochem., 2017, 518:35-45.

    19. [19]

      DEIMINIAT B, ROUNAGHI G H, ARBAB-ZAVAR M H, RAZAVIPANAH I. Sens. Actuators, B, 2017, 242:158-166.

    20. [20]

      CAO H X, WANG L, PAN C G, HE Y S, LIANG G X. Microchim. Acta, 2018, 185:463.

    21. [21]

      DERIKVANDI Z, ABBASI A R, ROUSHANI M, DERIKVAND Z, AZADBAKHT A. Anal. Biochem., 2016, 512:47-57.

    22. [22]

      ASHRAF G, ASIF M, AZIZ A, WANG Z Y, QIU X Y, HUANG Q, XIAO F, LIU H F. Microchim. Acta, 2019, 186:337.

    23. [23]

      BAGHAYERI M, ANSARI R, NODEHI M, RAZAVIPANAH I, VEISI H. Microchim. Acta, 2018, 185:320.

    24. [24]

      YU Z H, LUAN Y N, LI H Y, WANG W, WANG X Y, ZHANG Q. Sens. Actuators, B, 2019, 284:73-80.

    25. [25]

      LI H Y, DING S N, WANG W, LV Q, WANG Z J, BAI H, ZHANG Q. Microchim. Acta, 2019, 186:860.

    26. [26]

      HE W W, LIU Y, YUAN J S, YIN J J, WU X C, HU X N, ZHANG K, LIU J B, CHEN C Y, JI Y L, GUO Y T. Biomaterials, 2011, 32(4):1139-1147.

    27. [27]

      ZHAN L, ZHEN S J, WAN X Y, GAO P F, HUANG C Z. Talanta, 2016, 148:308-312.

    28. [28]

      NI P J, SUN Y J, DAI H C, HU J T, JIANG S, WANG Y L, LI Z. Biosens. Bioelectron., 2015, 63(2):47-52.

    29. [29]

      LIN J, NI P J, SUN Y J, WANG Y L, WANG L, LI Z. Sens. Actuators, B, 2018, 255:3472-3478.

    30. [30]

      SUN Q Q, YAN F, SU B. Biosens. Bioelectron., 2018, 105:129-136.

    31. [31]

      ALVES-BALVEDI R P, CAETANO L P, MADURRO J M, BRITO-MADURRO A G. Biosens. Bioelectron., 2016, 85:226-231.

    32. [32]

      VOLPE G, DRAISCI R, PALLESCHI G, COMPAGNONE D. Analyst, 1998, 123(6):1303-1307.

    33. [33]

      HEURICH M, ABDUL KADIR M K, TOTHILL I E. Sens. Actuators, B, 2011, 156:162-168.

    34. [34]

      JO M, AHN J Y, LEE J, LEE S, HONG S W, YOO J W, KANG J, DUA P, LEE D, HONG S, KIM S, Oligonucleotides, 2011, 21:85-91.

    35. [35]

      YUN W, WU H, CHEN L, YANG L Z. Anal. Chim. Acta, 2018, 1020:104-109.

    36. [36]

      ALVES-BALVEDI R P, CAETANO L P, MADURRO J M, BRITO-MADURRO A G. Biosens. Bioelectron., 2016, 85:226-231.

    37. [37]

      BARD A J, FAULKNER L R. Electrochemical Methods:Fundamentals and Applications. Wiley, New York., 2011:232-235.

    38. [38]

      ZHANG D W, YANG J Y, YE J, XU L R, XU H C, ZHAN S S, XIA B, WANG L M. Anal. Biochem., 2016, 499:51-56.

    39. [39]

      LIU L Y, ZHAO Q. J. Environ. Sci., 2020, 97:19-24.

    40. [40]

      ZHANG J, ZHAO S Q, ZHANG K, ZHOU J Q. Chemosphere, 2014, 95:105-110.

  • 加载中
计量
  • PDF下载量:  10
  • 文章访问数:  1091
  • HTML全文浏览量:  139
文章相关
  • 收稿日期:  2020-08-05
  • 修回日期:  2021-01-12
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章