纳米四氧化三铁基质用于基质辅助激光解吸电离质谱法分析小分子化合物

赵玥祯 徐杨 龚灿 鞠钰蕊 刘兆鑫 许旭

引用本文: 赵玥祯, 徐杨, 龚灿, 鞠钰蕊, 刘兆鑫, 许旭. 纳米四氧化三铁基质用于基质辅助激光解吸电离质谱法分析小分子化合物[J]. 分析化学, 2021, 49(1): 103-112. doi: 10.19756/j.issn.0253-3820.201391 shu
Citation:  ZHAO Yue-Zhen,  XU Yang,  GONG Can,  JU Yu-Rui,  LIU Zhao-Xin,  XU Xu. Analysis of Small Molecule Compounds by Matrix-assisted Laser Desorption Ionization Mass Spectrometry with Fe3O4 Nanoparticles as Matrix[J]. Chinese Journal of Analytical Chemistry, 2021, 49(1): 103-112. doi: 10.19756/j.issn.0253-3820.201391 shu

纳米四氧化三铁基质用于基质辅助激光解吸电离质谱法分析小分子化合物

    通讯作者: 许旭,E-mail:xuxu3426@sina.com,xuxu@sit.edu.cn
  • 基金项目:

    国家自然科学基金项目(No.31671928)和上海市自然科学基金项目(No.15ZR1440800)资助

摘要: 考察了基质辅助激光解吸电离质谱(MALDI-MS)使用纳米四氧化三铁(Fe3O4)基质分析氨基酸、寡糖和甘油三酯等小分子化合物的效果。与不同的纳米基质以及二元混合基质比较后,选择Fe3O4纳米基质,以D,L-焦谷氨酸、D,L-天冬酸、L-脯氨酸、L-苯丙氨酸、D-(+)-蔗糖、棉子糖、三棕榈酸甘油酯和三油酸甘油酯为样品,考察了实验条件对噪音和信号强度的影响,结果表明,Fe3O4作为MALDI基质具有在增强检测信号强度的同时降低背景噪声的特点。在正电荷检测模式下,选择激光能量为70%,采用先加基质再加分析物的点样方法进行分析,结果表明,纳米Fe3O4基质用于检测氨基酸、寡糖和甘油三酯的重现性和灵敏度良好。在优化条件下分析L-苯丙氨酸、D-(+)-蔗糖和三油酸甘油酯,点内重复性相对标准偏差(RSD)<3.2%,点间重复性RSD<6.0%,在0.05-1.0 mg/mL范围内,测定3种样品的线性相关系数R2>0.997,显示出良好的定量分析潜力。

English


    1. [1]

      AL-HETLANI E, AMIN M O, MADKOUR M, NAZEER A A. Talanta, 2018, 185:439-445.

    2. [2]

      WANG Z J, CAI Y, WANG Y, ZHOU X W, ZHANG Y, LU H J. Sci. Rep., 2017, 7:44466.

    3. [3]

      KOLAROVA L, KUCERA L, VANHARA P, HAMPL A, HAVEL J. Rapid Commun. Mass Spectrom., 2015, 29(17):1585-1595.

    4. [4]

      HE H, WEN Y R, GUO Z C, LI P F, LIU Z. Anal. Chem., 2019, 91(13):8390-8397.

    5. [5]

      LIANG Q L, SHERWOOD J, MACHER T, WILSON J M, BAO Y P, CASSADY C J. J. Am. Soc. Mass Spectrom., 2017, 28(3):409-418.

    6. [6]

      CALVANO C D, CAPOZZI M A M, PUNZI A, FARINOLA G M, CATALDI T R I, PALMISANO F. ACS Omega, 2018, 3(12):17821-17827.

    7. [7]

      DE-ALMEIDA C M, PINTO F E, DOS-SANTOS N A, DE-SOUZA L M, MERLO B B, THOMPSON C J, ROMAO W. Microchem. J., 2019, 149:104002-104010.

    8. [8]

      DOS-SANTOS N A, DE-SOUZA L M, PINTO F E, DE-J MACRINO C, DE-ALMEIDA C M, MERLO B B, FILGUEIRAS P R, ORTIZ R S, MOHANA-BORGES R, ROMAO W. Anal. Methods, 2019, 11(13):1757-1764.

    9. [9]

      STUEBIGER G, NAIRN M D, ABBAN T K, OPENSHAW M E, MANCERA L, HERZIG B, WUCZKOWSKI M, SENFTER D, MADER R M. Anal. Chem., 2018, 90(22):13178-13182.

    10. [10]

      LI B, SUN R Y, GORDON A, GE J Y, ZHANG Y, LI P, YANG H. Anal. Chem., 2019, 91(13):8221-8228.

    11. [11]

      LEE Y, SEO E, PARK T M, BAE K H, CHA S. Mass Spectrom. Lett., 2017, 8(4):105-108.

    12. [12]

      MARSICO A L, DUNCAN B, LANDIS R F, TONGA G Y, ROTELLO V M, VACHET R W. Anal. Chem., 2017, 89(5):3009-3014.

    13. [13]

      YANG Meng-Rui, WANG Min, ZHOU Jian, TANG Xiao-Yan, MAO Xue-Fei, WANG Tong-Tong. Chin. J. Anal. Chem., 2016, 44(2):315-318. 杨梦瑞, 王敏, 周剑, 汤晓艳, 毛雪飞, 王彤彤. 分析化学, 2016, 44(2):315-318.

    14. [14]

      CHU H W, UNNIKRISHNAN B, ANAND A, MAO J Y, HUANG C C. J. Food Drug Anal., 2018, 26(4):1215-1228.

    15. [15]

      ZHU Z P, SHEN J J, WANG D W, CHEN C, XU Y F, GUO H M, KANG D, HAMADA N, DONG J, WANG G J, LIANG Y. Anal. Bioanal. Chem., 2019, 411(5):1041-1052.

    16. [16]

      BANAZADEH A, PENG W J, VEILLON L, MECHREF Y. J. Am. Soc. Mass Spectrom., 2018, 29(9):1892-1900.

    17. [17]

      CHEN S, ZHENG H Z, WANG J N, HOU J, HE Q, LIU H H, XIONG C Q, KONG X L, NIE Z X. Anal. Chem., 2013, 85(14):6646-6652.

    18. [18]

      SHAHNAWAZ K M, BHAISARE M L, PANDEY S, TALIB A, WU S M, KAILASA S K, WU H F. Int. J. Mass Spectrom., 2015, 393:25-33.

    19. [19]

      GEDDA G, PANDEY S, BHAISARE M L, WU H F. RSC Adv., 2014, 4(72):38027-38033.

    20. [20]

      CHEN Y L, GAO D, BAI H R, LIU H X, LIN S, JIANG Y Y. J. Am. Soc. Mass Spectrom., 2016, 27(7):1227-1235.

    21. [21]

      ZHANG Y Y, GAO D, LI S F, WEI W L, LIN J S, JIANG Y Y. Anal. Methods, 2019, 11(8):1131-1136.

    22. [22]

      MALEKI S, LEE D, KIM Y, KIM J. Int. J. Mass Spectrom., 2019, 442:44-50.

    23. [23]

      LU W J, LI Y, LI R J, SHUANG S M, DONG C, CAI Z W. ACS Appl. Mater. Interfaces, 2016, 8(20):12976-12984.

    24. [24]

      WANG Y W, GAO D, CHEN Y L, HU G N, LIU H X, JIANG Y Y. RSC Adv., 2016, 6(82):79043-79049.

    25. [25]

      LIN Z, ZHENG J N, LIN G, TANG Z, YANG X Q, CAI Z W. Anal. Chem., 2015, 87(15):8005-8012.

    26. [26]

      POPOVIC I, MILOVANOVIC D, MILETIC J, NESIC M, VRANJES M, SAPONJIC Z, PETKOVIC M. Opt. Quantum Electron., 2016, 48(2):113-119.

    27. [27]

      YANG H, LI S L, ZHANG Q, WANG Z P, LI N, HAN C, HUO Q, ZHAO Z W. Talanta, 2019, 198:310-315.

    28. [28]

      YONEZAWA T, ASANO T, MATSUBARA M. Bull. Chem. Soc. Jpn., 2016, 89(3):346-353.

    29. [29]

      WU Q, CHU J L, RUBAKHIN S S, GILLETTE M U, SWEEDLER J V. Chem. Sci., 2017, 8(5):3926-3938.

    30. [30]

      ANTONE A J, LIANG Q L, SHERWOOD J A, WEISS J C, WILSON J M, DEB S, CASSADY C J, BAO Y P. ACS Appl. Nano Mater., 2019, 2(6):3999-4008.

    31. [31]

      FUJII Y, DIING Y, UMEZAWA T, AKIMOTO T, XU J W, UCHIDA T, FUJINO T. Anal. Sci., 2018, 34(2):221-225.

    32. [32]

      FEENSTRA A D, O'NEILL K C, YAGNIK G B, LEE Y J. RSC Adv., 2016, 6(101):99260-99268.

    33. [33]

      KLEIN A T, YAGNIK G B, HOHENSTEIN J D, JI Z Y, ZI J C, REICHERT M D, MACINTOSH G C, YANG B, PETERS R J, VELA J, LEE Y J. Anal. Chem., 2015, 87(10):5294-5301.

    34. [34]

      WEI Y, HAN B, HU X Y, LIN Y H, WANG X Z, DENG X L. Procedia Eng., 2012, 27:632-637.

    35. [35]

      HE Xin-Yu, WANG Bing, ZHOU Yang-Yang, BIAN Xiao-Jun, YAN Juan. Chin. J. Anal. Chem., 2018, 46(7):1069-1076. 何新宇, 王冰, 周洋洋, 卞晓军, 颜娟. 分析化学, 2018, 46(7):1069-1076.

    36. [36]

      WANG J M, ZHENG Y, PENG T Y, ZHANG J, LI R J. ACS Sustainable Chem. Eng., 2017, 5(9):7549-7556.

    37. [37]

      DING Yong-Ling, LIU Fu-Tian, CHENG Chuan-Bing, LIN Xi-Zhu. J. Synth. Cryst., 2012, 41(2):468-473. 丁永玲, 刘福田, 程传兵, 蔺锡柱. 人工晶体学报, 2012, 41(2):468-473.

    38. [38]

      MA Xiao-Li, SHANG Hong-Zhou, ZHAO Yan-Qin, SUN Xiao-Ran, ZHANG Xiao-Mei. Fine Specialty Chem., 2012, 20(2):26-31. 马晓利, 尚宏周, 赵艳琴, 孙晓然, 张小梅. 精细与专用化妆品, 2012, 20(2):26-31.

    39. [39]

      WANG Fei, ZHANG Xuan, KE Chang-Hong, LI Hai-Yang, MA Jia-Hua, MU Hong-Tao. New Chem. Mater., 2017, 45(5):188-190. 王飞, 张璇, 柯长洪, 李海洋, 马家骅, 穆洪涛. 化工新型材料, 2017, 45(5):188-190.

    40. [40]

      CUI Sheng, SHEN Xiao-Dong, LIN Ben-Lan, XU Na. Chin. J. Sens. Actuators, 2006, 19(5):2322-2325. 崔升, 沈晓冬, 林本兰, 徐娜. 传感技术学报, 2006, 19(5):2322-2325.

    41. [41]

      PEI Xing-Li, HUANG Yu-Yu, GONG Can, XU Xu. Chin. J. Anal. Chem., 2017, 45(8):1155-1164. 裴兴丽, 黄煜宇, 龚灿, 许旭. 分析化学, 2017, 45(8):1155-1164.

    42. [42]

      KIM M J, PARK J M, NOH J Y, YUN T G, KANG M J, PYUN J C. Rapid Commun. Mass Spectrom., 2019, 33(5):527-538.

    43. [43]

      BIBI A, JU H. J. Mass Spectrom., 2016; 51(4):291-297.

  • 加载中
计量
  • PDF下载量:  9
  • 文章访问数:  1246
  • HTML全文浏览量:  148
文章相关
  • 收稿日期:  2020-07-05
  • 修回日期:  2020-11-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章