分子印迹技术在蛋白质翻译后修饰分析中的应用

张攀 姜丽艳 马玖彤 贾琼

引用本文: 张攀, 姜丽艳, 马玖彤, 贾琼. 分子印迹技术在蛋白质翻译后修饰分析中的应用[J]. 分析化学, 2021, 49(1): 24-33. doi: 10.19756/j.issn.0253-3820.201369 shu
Citation:  ZHANG Pan,  JIANG Li-Yan,  MA Jiu-Tong,  JIA Qiong. Application of Molecular Imprinting Technology in Post-translational Modified Protein Enrichment[J]. Chinese Journal of Analytical Chemistry, 2021, 49(1): 24-33. doi: 10.19756/j.issn.0253-3820.201369 shu

分子印迹技术在蛋白质翻译后修饰分析中的应用

    通讯作者: 马玖彤,E-mail:majt@jlu.edu.cn; 贾琼,E-mail:jiaqiong@jlu.edu.cn
  • 基金项目:

    吉林省科技厅自然科学基金项目(No.20190201079JC)资助。

摘要: 蛋白质翻译后修饰在细胞的生命过程中发挥着重要的调控作用,可赋予蛋白质特定的生物活性,发挥相应的功能。翻译后修饰蛋白质在生物体中的含量非常低,因此,准确鉴别蛋白质的翻译后修饰面临着巨大的挑战。利用分子印迹技术制备的印迹材料,具有与目标分子尺寸、形状和功能基团匹配的印迹空腔,在翻译后修饰蛋白质的分离富集领域表现出了极大的应用潜力。本文概述了蛋白质翻译后修饰和分子印迹技术的种类、特点,在此基础上综述了分子印迹技术在糖基化、磷酸化、乙酰化、硫酸化翻译后修饰蛋白质富集中的应用,并对其发展前景进行了展望。

English


    1. [1]

      HUANG J F, DONG J, SHI X D, CHEN Z W, CUI Y S, LIU X Y, YE M L, LI L J. Anal. Chem., 2019, 91(18):11589-11597.

    2. [2]

      MANN M, JENSEN O N. Nat. Biotechnol., 2003, 21(3):255-261.

    3. [3]

      HU Ye-Chen, JIANG Bo, ZHANG Li-Hua, ZHANG Yu-Kui. Chin. J. Chromatogr., 2020, 38(3):278-286. 胡晔晨, 江波, 张丽华, 张玉奎. 色谱, 2020, 38(3):278-286.

    4. [4]

      DOMON B, AEBERSOLD R. Science, 2006, 312(5771):212-217.

    5. [5]

      WITZE E S, OLD W M, RESING K A, AHN N G. Nat. Methods, 2007, 4(10):798-806.

    6. [6]

      MA J, ZHANG Y, ZHAO B, JIA Q. Anal. Chim. Acta, 2020, 1122:97-113.

    7. [7]

      SONG Y Y, LI X L, FAN J B, KANG H J, ZHANG X F, CHEN C, LIANG X M, WANG S T. Adv. Mater., 2018, 30(39):1803299.

    8. [8]

      JIANG D, LI X, JIA Q. ACS Sustainable Chem. Eng., 2018, 7(1):421-429.

    9. [9]

      ZHENG H, JIA J, LI Z, JIA Q. Anal. Chem., 2020, 92(3):2680-2689.

    10. [10]

      LI Y, LIU L, WU H, DENG C H. Anal. Chim. Acta, 2019, 1079:111-119.

    11. [11]

      KAJI H, SAITO H, YAMAUCHI Y, SHINKAWA T, TAOKA M, HIRABAYASHI J, KASAI K, TAKAHASHI N, ISOBE T. Nat. Biotechnol., 2003, 21:667-672.

    12. [12]

      LI Y, WANG J, SUN N, DENG C H. Anal. Chem., 2017, 89(20):11151-11158.

    13. [13]

      QI H, LI Z, ZHENG H, FU L, JI Q. Chin. Chem. Lett., 2019, 30(12):2181-2185.

    14. [14]

      SUN Z, QIN H, WANG F, CHENG K, DONG M, YE M, ZOU H. Anal. Chem., 2012, 84(20):8452-8456.

    15. [15]

      LI D J, CHEN Y, LIU Z. Chem. Soc. Rev., 2015, 44(22):8097-8123.

    16. [16]

      JIANG Dan-Dan, SONG Nai-Zhong, WANG Hao, JIA Qiong. Chin. J. Anal. Chem., 2016, 44(4):647-653. 江丹丹, 宋乃忠, 王皓, 贾琼. 分析化学, 2016, 44(4):647-653.

    17. [17]

      ZHANG H. Adv. Mater., 2020, 32(3):1806328.

    18. [18]

      LI W, ZHANG Q, WANG Y, MA Y, GUO Z, LIU Z. Anal. Chem., 2019, 91(7):4831-4837.

    19. [19]

      PAN J, XUE X H, WANG J H, ME H M, WU Z Y. Polymer, 2009, 50(11):2365-2372.

    20. [20]

      MA Xiong-Hui, LI Jian-Ping, WANG Chao, XU GuO-Bao. Chin. J. Anal. Chem., 2016, 44(1):152-159. 马雄辉, 李建平, 王超, 徐国宝. 分析化学, 2016, 44(1):152-159.

    21. [21]

      DRZAZGOWSKA J, SCHMID B, SUSSMUTH R D, ALTINTAS Z. Anal. Chem., 2020, 92(7):4798-4806.

    22. [22]

      CARNEIRO M C C G, SOUSA C A, CORREA D M A, SALES M G F. Biosens. Bioelectron., 2019, 146:111761.

    23. [23]

      SUN Xiao-Yu, MA Run-Tian, SHI Yan-Ping. Chin. J. Chromatogr., 2020, 38(1):50-59. 孙晓宇, 马润恬, 师彦平. 色谱, 2020, 38(1):50-59.

    24. [24]

      JIA M F, ZHANG Z, LI J H, MA X, CHEN L X, YANG X B. TrAC-Trends Anal. Chem., 2018, 106:190-201.

    25. [25]

      ANSARI S, MASOUM S. TrAC-Trends Anal. Chem., 2019, 114:29-47.

    26. [26]

      ZHU H, YAO H, XIA K, LIU J, YIN X, ZHANG W, PAN J. Chem. Eng. J., 2018, 346:317-328.

    27. [27]

      XING R, WEN Y, HE H, GUO Z, LIU Z. TrAC-Trends Anal. Chem., 2019, 110:417-428.

    28. [28]

      SAH H. J. Controlled Release, 1999, 58(2):143-151.

    29. [29]

      WEN Xue, ZHENG Hai-Jiao, ZHANG Yang, JIA Qiong. Chin. J. Anal. Chem., 2020, 48(1):13-21. 温雪, 郑海娇, 张扬, 贾琼. 分析化学, 2020, 48(1):13-21.

    30. [30]

      XIONG Fang-Fang, JIANG Dan-Dan, JIA Qiong. Chin. J. Chromatography, 2020, 38(1):61-65. 熊芳芳, 江丹丹, 贾琼. 色谱, 2020, 38(1):60-65.

    31. [31]

      SUN Li, ZHAO Hai-Feng, GUO Hong-Hua, YANG Guang-Yuan, HE Cheng-Yan, SHI Qing-Hong, WEN Xue, WANG XiaO-Ting, ZHAO Li-Chun. Chin. J. Anal. Chem., 2012, 40(10):1500-1506. 孙莉, 赵海丰, 郭宏华, 扬光远, 何成彦, 师庆红, 文雪, 王小婷, 赵丽纯. 分析化学, 2012, 40(10):1500-1506.

    32. [32]

      KANNO T, KANNO Y, SIEGEL R M, JANG M K, LENARDO M J, OZATO K. Mol. Cell, 2004, 13(1):33-43.

    33. [33]

      XU L, WANG W, ZHANG Z, YANG P, FAN H, KONG J. Microchim. Acta, 2013, 180(7-8):613-618.

    34. [34]

      YANG Y S, WANG C C, CHEN B H, HOU Y H, HUNG K S, MAO Y C. Molecules, 2015, 20(2):2138-2164.

    35. [35]

      KANAN Y, AL UBAIDI M R. Curr. Protoc. Protein Sci., 2015, 80:1471-14720.

    36. [36]

      STONE M J, CHUANG S, HOU X, SHOHAM M, ZHU J Z. New Biotechnol., 2009, 25(5):299-317.

    37. [37]

      BOITARD C, ROLLET A L, MENAGER C, GRIFFETE N. Chem. Commun., 2017, 53(63):8846-8849.

    38. [38]

      LI F, LI J, ZHANG S S. Talanta, 2008, 74(5):1247-1255.

    39. [39]

      YANG K, LIU J, LI S, LI Q, WU Q, ZHOU Y, ZHAO Q, DENG N, LIANG Z, ZHANG L, ZHANG Y. Chem. Commun., 2014, 50(67):9521-9524.

    40. [40]

      KATZ A, DAVIS M E. Nature, 2000, 403(6767):286-289.

    41. [41]

      BIE Z, CHEN Y, YE J, WANG S, LIU Z. Angew. Chem. Int. Ed., 2015, 54(35):10211-10215.

    42. [42]

      GAO B J, FU H Y, LI Y B, DU R K. J. Chromatogr. B, 2010, 878(21):1731-1738.

    43. [43]

      RACHKOV A, MINOURA N. J. Chromatogr. A, 2000, 889(1-2):111-118.

    44. [44]

      ZHAO X L, LI D Y, HE X W, LI W Y, ZHANG Y K. J. Mater. Chem. B, 2014, 2(43):7575-7582.

    45. [45]

      TANG A N, DUAN L, LIU M, DONG X. J. Mater. Chem. B, 2016, 49(46):7464-7471.

    46. [46]

      HAN Y M, YE Z J, CHEN L X, XIAO L H. Anal. Chim. Acta, 2020, 1109:53-60.

    47. [47]

      LI L, LU Y, BIE Z, CHEN H Y, LIU Z. Angew. Chem. Int. Ed., 2013, 52(29):7451-7454.

    48. [48]

      XING R, WANG S, BIE Z, HE H, LIU Z. Nat. Protoc., 2017, 12(5):964-987.

    49. [49]

      WANG S S, YE J, BIE Z J, LIU Z. Chem. Sci., 2014, 5(3):1135-1140.

    50. [50]

      XING R, MA Y, WANG Y, WEN Y, LIU Z. Chem. Sci., 2019, 10(6):1831-1835.

    51. [51]

      DINC M, ESEN C, MIZAIKOFF B. TrAC-Trends Anal. Chem., 2019, 114:202-217.

    52. [52]

      ZHANG Y, LIU R, HU Y, LI G. Anal. Chem., 2009, 81(3):967-976.

    53. [53]

      LI Ying, XU Wen-Kai, LI Ping, ZHU Xiao-Xue, HUANG Yan-Feng, ZHANG Ji-Mei. Chin. J. Anal. Chem., 2018, 46(7):1047-1054. 李颖, 徐文凯, 李苹, 朱小雪, 黄艳凤, 张纪梅. 分析化学, 2018, 46(7):1047-1054.

    54. [54]

      MASOUMI M, JAHANSHAHI M. Adv. Polym. Tech., 2016, 35(2):221-227.

    55. [55]

      MA X, TU X, GAO F, XIE Y, HUANG X, FERNANDEZ C, QU F, LIU G, LU L, YU Y. Sens. Actuators B, 2020, 309:127815.

    56. [56]

      TAN K, MA Q, LUO J, XU S, ZHU Y, WEI W, LIU X, GU Y. Biosens. Bioelectron., 2018, 117:713-719.

    57. [57]

      WANG H F, HE Y, JI T R, YAN X P. Anal. Chem., 2009, 81(4):1615-1621.

    58. [58]

      WU X, LV X, WANG J, SUN L, YAN Y. Anal. Methods, 2017, 9(31):4609-4615.

    59. [59]

      ZHANG M, ZHANG X H, HE X W, CHEN L X, ZHANG Y K. Nanoscale, 2012, 4(10):3141-3147.

    60. [60]

      HE P Y, ZHU H J, MA Y, LI N, NIU X H, WEI M B, PAN J M. Chem. Eng. J., 2019, 367:55-63.

    61. [61]

      MOREIRA F T C, DUTRA R A F, NORONHA J P C, CUNHA A L, SAIES M G F. Biosens. Bioelectron., 2011, 28(1):243-250.

    62. [62]

      YANG Y Q, HE X W, WANG Y Z, LI W Y, ZHANG Y K. Biosens. Bioelectron., 2014, 54:266-272.

    63. [63]

      TAKEUCHI T, SUNAYAMA H. Chem. Commun., 2018, 54(49):6243-6251.

    64. [64]

      SUNAYAMA H, OOYA T, TAKEUCHI T. Chem. Commun., 2014, 50(11):1347-1349.

    65. [65]

      MORI K, HIRASE M, MORISHIGE T, TAKANO E, SUNAYAMA H, KITAYAMA Y, INUBUSHI S, SASAKI R, YASHIRO M, TAKEUCHI T. Angew. Chem. Int. Ed., 2019, 58(6):1612-1615.

    66. [66]

      SUGA Y, SUNAYAMA H, OOYA T, TAKEUCHI T. Chem. Commun., 2013, 49(76):8450-8452.

    67. [67]

      HORIKAWA R, SUNAYAMA H, KITAYAMA Y, TAKANO E, TAKEUCHI T. Angew. Chem. Int. Ed., 2016, 55(42):13023-13027.

    68. [68]

      MENG Zi-Hui, WANG Yi-Fei, XIE Teng-Sheng, CHEN Wen, QIU Li-Li, XUE Min. Chem. J. Chin. Univ., 2019, 40(1):62-68. 孟子晖, 王一飞, 谢腾升, 陈伟, 邱丽莉, 薛敏. 高等学校化学学报, 2019, 40(1):62-68.

    69. [69]

      BIE Z, XING R, HE X, MA Y, CHEN Y, LIU Z. Anal. Chem., 2018, 90(16):9845-9852.

    70. [70]

      ZHANG G, YU Y, ZHANG L, LIN B, WANG Y, GUO M, CAO Y. Biosens. Bioelectron., 2020, 302:126998.

    71. [71]

      ZHAO T, WANG J, HE J, DENG Q, WANG S. Biosens. Bioelectron., 2017, 91:756-761.

    72. [72]

      YU Q, LI X S, YUAN B F, FENG Y Q. J. Sep. Sci., 2014, 37(5):580-586.

    73. [73]

      CHEN J, SHINDE S, KOCH M H, EISENACHER M, GALOZZI S, LERARI T, BARKOVITS K, SUBEDI P, KRUGER R, KUHLMANN K, SELLERGREN B, HELLING S, MARCUS K. Sci. Rep., 2015, 5:11438.

    74. [74]

      CHEN Y, LI X, YIN D, LI D, BIE Z, LIU Z. Chem. Commun., 2015, 51(54):10929-10932.

    75. [75]

      XIONG F, JIANG L, JIA Q. Anal. Chim. Acta, 2020, 1099:103-110.

    76. [76]

      EMGENBROICH M, BORRELLI C, SHINDS S, LAZRAQ I, VILELA F, HALL A J, OXELBARK J, DE L E, COURTOIS J, SIMANOVA A, VERHAGE J, IRGUM K, KARIM K, SELLERGREN B. Chem. Eur. J., 2008, 14(31):9516-9529.

    77. [77]

      SAEEDZADEH A N, MILANI H M R. Anal. Methods, 2020, 12(1):63-72.

    78. [78]

      CHEN Y, LI D, BIE Z, HE X, LIU Z. Anal. Chem., 2016, 88(2):1447-1454.

    79. [79]

      ZHANG G, JIANG L, ZHOU J, HU L, FENG S. Chem. Commun., 2019, 55(67):9927-9930.

    80. [80]

      YANG F, LIN S, DONG X. Chem. Commun., 2015, 51(36):7673-7676.

    81. [81]

      YANG X, DONG X, ZHANG K, YANG F, GUO Z. J. Mater. Chem. B, 2016, 4(5):920-928.

    82. [82]

      SHINDE S, BUNSCHOTNE A, KRUIJTZER J A W, LISKAMP R M J. Angew. Chem. Int. Ed., 2012, 51(33):8326-8329.

  • 加载中
计量
  • PDF下载量:  10
  • 文章访问数:  1523
  • HTML全文浏览量:  263
文章相关
  • 收稿日期:  2020-06-25
  • 修回日期:  2020-09-26
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章