基于简单信号读出的即时检测研究进展

饶红红 刘海霞 罗明月 薛新 魏明明 薛中华

引用本文: 饶红红, 刘海霞, 罗明月, 薛新, 魏明明, 薛中华. 基于简单信号读出的即时检测研究进展[J]. 分析化学, 2021, 49(1): 1-13. doi: 10.19756/j.issn.0253-3820.201346 shu
Citation:  RAO Hong-Hong,  LIU Hai-Xia,  LUO Ming-Yue,  XUE Xin,  WEI Ming-Ming,  XUE Zhong-Hua. Progress of Simple Signal Readout-based Point-of-Care Testing[J]. Chinese Journal of Analytical Chemistry, 2021, 49(1): 1-13. doi: 10.19756/j.issn.0253-3820.201346 shu

基于简单信号读出的即时检测研究进展

    通讯作者: 饶红红,E-mail:rhh@nwnu.edu.cn
  • 基金项目:

    国家自然科学基金项目(Nos.21765013,21665023)和甘肃省高等学校科研项目(No.2017A-115)资助。

摘要: 即时检测(Point-of-care testing,POCT)技术作为一种简便、快速的在线分析检测手段,在疾病诊断、健康管理、环境监测和应急响应分析等领域得到了广泛应用。有效构建适于各种目标分析物的简单信号读出的产生、转移、放大和增敏策略,发展具有简单、快速、灵敏的分析检测信号,已成为POCT研究领域关注的热点。一些具有特殊催化性能的功能化纳米材料的引入,进一步促进了颜色、温度、压力、质量和距离(长度)等简单信号读出的应用,极大地拓展了此类方法在简单、快速、灵敏传感分析中的应用。本文针对基于简单信号读出的POCT研究进展,从原理、分类和应用方面进行了综述,并对此类传感方法的发展方向和应用前景进行了展望。

English


    1. [1]

      LUPPA P B, MULLER C, SCHLICHTIGER A, SCHLEBUSCH H. TrAC-Trends Anal. Chem., 2011, 30(7):887-897.

    2. [2]

      YANG M Z, LIU Y, JIANG X Y. Chem. Soc. Rev., 2019, 48(3):850-884.

    3. [3]

      GUBLAL V, HARRIS L F, RICCO A J, TAN M X, WILLIAMS D E. Anal. Chem., 2012, 84(2):487-515.

    4. [4]

      HIRABAYASHI Y, SAKUMA Y. Med. Technol., 2007, 35:363.

    5. [5]

      WEI X F, TIAN T, JIA S S, ZHU Z, MA Y L, SUN J J, LIN Z Y, YANG C Y J. Anal. Chem., 2015, 87(8):4275-4282.

    6. [6]

      MULLER M M, HACKL W, GRIESMACHER A. Anaesthesist, 1999, 48:3-8.

    7. [7]

      SASAKI M, SAKAKURA Y. Rinsho Byori Japanese J. Clin. Pathol., 2007, 138:64-72.

    8. [8]

      YANG J C, WANG K, XU H, YAN W Q, JIN Q H, CUI D X. Talanta, 2019, 202(1):96-110.

    9. [9]

      REGAN B, O KENNEDY R, COLLINS D. Biosensors, 2018, 8(4):114.

    10. [10]

      LI Z D, LIU H, HE X C, XU F, LI F. TrAC-Trends Anal. Chem., 2018, 108:50-64.

    11. [11]

      SAHA K, AGASTI S S, KIM C, LI X N, ROTELLO V M. Chem. Rev., 2012, 112(5):2739-2779.

    12. [12]

      WEI T X, DONG T T, WANG Z Y, BAO J C, TU W W, DAI Z H. J. Am. Chem. Soc., 2015, 137(28):8880-8883.

    13. [13]

      CHANSUVARN W, TUNTULANI T, IMYIM A. TrAC-Trends Anal. Chem., 2015, 65:83-96.

    14. [14]

      KAILASA S K, KODURU J R, DESAI M L, PARK T J, SINGHAI R K, BASU H. TrAC-Trends Anal. Chem., 2018, 105:106-120.

    15. [15]

      XIE X J, XU W, LIU X G. Acc. Chem. Res., 2012, 45(9):1511-1520.

    16. [16]

      DING Y J, WANG S S, LI J H, CHEN L X. TrAC-Trends Anal. Chem., 2016, 82:175-190.

    17. [17]

      HUANG X W, ZOU X B, SHI J Y, LI Z H, ZHAO J W. Trends Food Sci. Tech., 2018, 81:90-107.

    18. [18]

      ZHANG X H, LIU W, LI X M, ZHANG Z, SHAN D L, XIA H, ZHANG S T, LU X Q. Anal. Chem., 2018, 90(24):14309-14315.

    19. [19]

      SOH J H, LIN Y Y, RANA S, YING J Y, STEVENS M M. Anal. Chem., 2015, 87(15):7644-7652.

    20. [20]

      LI H X, ROTHBERG L. Proc. Natl. Acad. Sci. USA, 2004, 101(39):14036-14039.

    21. [21]

      WANG H Q, RAO H H, LUO M Y, XUE X, XUE Z H, LU X Q. Coordin. Chem. Rev., 2019, 398(1):113003.

    22. [22]

      RAO H H, XUE X, WANG H Q, XUE Z H. J. Mater. Chem. C, 2019, 7:4610-4621.

    23. [23]

      NGUYEN B T, WISKUR S L, ANSLYN E V. Org. Lett., 2004, 6(15):2499-2501.

    24. [24]

      NGUYEN B T, ANSLYN E V. Coord. Chem. Rev., 2006, 250(23-24):3118-3127.

    25. [25]

      WISKUR S L, AIT-HADDOU H, LAVIGNE J J, ANSLYN E V. Acc. Chem. Res., 2001, 34(12):963-972.

    26. [26]

      HOSSEIN T, GOHAR D R, NARGES M. Food Technol. Biotechnol., 2018, 56(3):329-336.

    27. [27]

      SHEN C, TANG Q, GONG C B, CHOW C F. J. Mater. Chem. C, 2020, 8(15):5029-5035.

    28. [28]

      ZHANG T Z, ANSLYN E V. Tetrahedron, 2004, 60(49):11117-11124.

    29. [29]

      O'Neil E J, Smith B D. Coord. Chem. Rev., 2006, 250(23-24):3068-3080.

    30. [30]

      JANOWSKI V, SEVERIN K. Chem. Commun., 2011, 47(30):8521-8523.

    31. [31]

      LIU X J, NGO H T, GE Z J, BUTLER S J, JOLLIFFE K A. Chem. Sci., 2013, 4(4):1680-1686.

    32. [32]

      LEI C Y, DAI H, FU Y C, YING Y B, LI Y B. Anal. Chem., 2016, 88(17):8542-8547.

    33. [33]

      JOLLIFFE K A. Acc. Chem. Res., 2017, 50(9):2254-2263.

    34. [34]

      LI M, CUSHING S K, LIANG H Y, SURI S, MA D L, WU N Q. Anal. Chem., 2013, 85(4):2072-2078.

    35. [35]

      ELGHANIAN R, STORHOFF J J, MUCIC R C, LETSINGER R L, MIRKIN C A. Science, 1997, 277(5329):1078-1081.

    36. [36]

      OZBAY E. Science, 2006, 311(5758):189-193.

    37. [37]

      SEPULVEDA B, ANGELOME P C, LECHUGA L M, LIZMARZAN L M. Nano Today, 2009, 4(3):244-251.

    38. [38]

      ZHAO W A, BROOK M A, LI Y F. ChemBioChem, 2008, 9(15):2363-2371.

    39. [39]

      DENG J J, JIANG Q, WANG Y X, YANG L F, YU P, MAO L Q. Anal. Chem., 2013, 85(19):9409-9415.

    40. [40]

      GAO L Z, ZHUANG J, NIE L, ZHANG J B, ZHANG Y, GU N, WANG T H, FENG J, YANG D L, PERRETT S, YAN X Y. Nat. Nanotechnol., 2007, 2:577-583.

    41. [41]

      WU J X, WANG X Y, WANG Q, LOU Z P, LI S R, ZHU Y Y, QIN L, WEI H. Chem. Soc. Rev., 2019, 48(4):1004-1076.

    42. [42]

      HUANG Y Y, REN J S, QU X G. Chem. Rev., 2019, 119(6):4357-4412.

    43. [43]

      CHEN Z W, WANG Z Z, REN J S, QU X G. Acc. Chem. Res., 2018, 51(3):789-799.

    44. [44]

      HU L Z, LIAO H, FENG L Y, WANG M, FU W S. Anal. Chem., 2018, 90(10):6247-6252.

    45. [45]

      WEN S H, ZHONG X L, WU Y D, LIANG R P, ZHANG L, QIU J D. Anal. Chem., 2019, 91(10):6487-6497.

    46. [46]

      LIU S G, HAN L, LI N, XIAO N, JU Y J, LI N B, LUO H Q. J. Mater. Chem. B, 2018, 6(18):2843-2850.

    47. [47]

      WEI Y Y, WANG D N, ZHANG Y Z, SUI J H, XU Z R. Biosens. Bioelectron., 2019, 140:111345.

    48. [48]

      GAO Z Q, DENG K C, WANG X D, MIRO M, TANG D P. ACS Appl. Mater. Interfaces, 2014, 6(20):18243-18250.

    49. [49]

      CHEN J, JACKSON A A, ROTELLO V M, NUGEN S R. Small, 2016, 12(18):2469-2475.

    50. [50]

      FAHIMI-KASHANI N, HORMOZI-NEZHAD M R. ACS Omega, 2018, 3(8):1386-1394.

    51. [51]

      YANG X, GAO Z. Chem. Commun., 2015, 51:6928-6931.

    52. [52]

      LIN T, WU Y, LI Z, SONG Z, GUO L, F FU. Anal. Chem., 2016, 88(22):11022-11027.

    53. [53]

      LIN T, LI Z, SONG Z, CHEN H, GUO L, FU F, WU Z. Talanta, 2016, 148:62-68.

    54. [54]

      ZHANG F, ZHU J, LI J J, ZHAO J W. J. Mater. Chem. C, 2015, 3:6035-6045.

    55. [55]

      WANG K, JIANG L, ZHANG F, WEI Y Q, WANG K, WANG H S, QI Z J, LIU S Q. Anal. Chem., 2018, 90(23):14056-14062.

    56. [56]

      PEI K, XIONG Y, XU B, WU K, LI X, JIANG H, XIONG Y. Sens. Actuators B, 2018, 262:102-109.

    57. [57]

      GUO Y H, WU J, LI J, JU H X. Biosens. Bioelectron., 2016, 78:267-273.

    58. [58]

      RODRIGUEZ L L, RICA R, ALVAREZ PUEBLA R A, LIZ MARZAN L M, STEVENS M M. Nat. Mater., 2012, 11(7):604-607.

    59. [59]

      XU S, OUYANG W, XIE P, LIN Y, QIU B, LIN Z, CHEN G, GUO L. Anal. Chem., 2017, 89(3):1617-1623.

    60. [60]

      WEI J, CHANG W, QILENG A, LIU W, ZHANG Y, RONG S, LEI H, LIU Y. Anal. Chem., 2018, 90(15):9606-9613.

    61. [61]

      ZHANG C, YIN A X, JIANG R B, RONG J, DONG L, ZHAO T, SUN L D, WANG J F, CHEN X, YAN C H. ACS Nano, 2013, 7(5):4561-4568.

    62. [62]

      MA X M, CHEN Z T, KKNNAN P, LIN Z Y, QIU B, GUO L H. Anal. Chem., 2016, 88(6):3227-3234.

    63. [63]

      GAO B B, LIU H, GU Z Z. Lab Chip, 2016, 16(3):525-531.

    64. [64]

      MA X M, WANG Z, HE S, CHEN C Q, LUO F, GUO L H, QIU B, LIN Z Y, CHEN G N, HONG G L. ACS Sensors, 2019, 4(9):2375-2380.

    65. [65]

      XUE X, LUO M Y, RAO H H, XUE Z H, WANG B D, LIU X H, LU X Q. Anal. Chem., 2020, 92(6):4672-4680.

    66. [66]

      FU G L, SANJAY S T, ZHOU W, BREKKEN R A, KIRKEN R A, LI X J. Anal. Chem., 2018, 90(9):5930-5937.

    67. [67]

      LUO M Y, XUE X, RAO H H, WANG H Q, LIU X H, ZHOU X B, XUE Z H, LU X Q. Sens. Actuators B, 2020, 309:127707.

    68. [68]

      GAO M, AN P L, RAO H H, NIU Z H, XUE X, LUO M Y, LIU X H, XUE Z H, LU X Q. Analyst, 2020, 145(4):1279-1287.

    69. [69]

      HE S S, HAI J, SUN S H, LU S Y, WANG B D. Anal. Chem., 2019, 91(16):10823-10829.

    70. [70]

      ZHOU W, HU K Q, KWEE S, TANG L, WANG Z H, XIA J F, LI X J. Anal. Chem., 2020, 92(3):2739-2747.

    71. [71]

      LIU Y H, PAN M, WANG W X, JIANG Q Y, WANG F, PANG D W, LIU X Q. Anal. Chem., 2019, 91(3):2086-2092.

    72. [72]

      WU L, FANG S T, SHI S, DENG J Z, LIU B, CAI L T. Biomacromolecules, 2013, 14(9):3027-3033.

    73. [73]

      SONG X J, CHEN Q, LIU Z. Nano Res., 2014, 8(2):340-354.

    74. [74]

      LIU Y L, AI K L, LIU J H, DENG M, HE Y Y, LU L H. Adv. Mater., 2013, 25(9):1353-1359.

    75. [75]

      WANG S J, HUANG P, NIE L M, XING R J, LIU D B, WANG Z, LIN J, CHEN S H, NIU G, LU G M, CHEN X Y. Adv. Mater., 2013, 25(22):3055-3061.

    76. [76]

      MANIKANDAN M, HASAN N, WU H F. Biomaterials, 2013, 34(23):5833-5842.

    77. [77]

      LI X, YANG L, MEN C, XIE Y F, LIU J J, ZOU H Y, LI Y F, ZHAN L, HUANG C Z. Anal. Chem., 2019, 91(7):4444-4450.

    78. [78]

      WANG Y J, YANG L Z, LI B X, YANG C J, JIN Y. Anal. Chem., 2017, 89(16):8311-8318.

    79. [79]

      ZHU Z, GUAN Z C, LIU D, JIA S S, LI J X, LEI Z C, LIN S C, JI T H, TIAN Z Q, YANG C J. Angew. Chem. Int. Ed., 2015, 54(36):10448-10453.

    80. [80]

      SHI L, LEI J, ZHANG B, LI B, YANG C J, JIN Y. ACS Appl. Mater. Interfaces, 2018, 10(15):12526-12533.

    81. [81]

      LIU D, JIA S S, ZHANG H M, MA Y L, GUAN Z H, LI J X, ZHU Z, JI T H, YANG C J. ACS Appl. Mater. Interfaces, 2017, 9(27):22252-22258.

    82. [82]

      SONG Y L, AN Y, LIU W Z, HOU W F, LI X R, LIN B Q, ZHU Z, GE S X, YANG H H, YANG C Y. Chem. Commun., 2017, 53:11774-11777.

    83. [83]

      TAO Q, WU X Y, LIN Q Y, ZHENG H Y, YANG W S, LIU D, YANG C J, JI T H. Anal. Bioanal. Chem., 2018, 410:7489-7498.

    84. [84]

      DING E L, HAI J, CHEN F J, WANG B D. ACS Appl. Nano Mater., 2018, 1(8):4156-4163.

    85. [85]

      DING E L, HAI J, LI T R, WU J, CHEN F J, WEN Y, WANG B D, LU X Q. Anal. Chem., 2017, 89(15):8140-8147.

    86. [86]

      HU S Q, TONG L J, WANG J X, YI X Y, LIU J W. Anal. Chem., 2019, 91(24):15418-15424.

    87. [87]

      LEI J, SHI L, LI B X, YANG C J, JIN Y. Biosens. Bioelectron., 2018, 122(30):32-36.

    88. [88]

      HUANG D, LIN B Q, SONG Y L, GIAN Z C, CHENG J, ZHU Z, YANG C Y. ACS Appl. Mater. Interfaces, 2019, 11(2):1800-1806.

    89. [89]

      LI J T, CUSHING S K, ZHENG P, SENTY T, MENG F, BRISTOW A D, MANIVANNAN A, WU N Q. J. Am. Chem. Soc., 2014, 136(23):8438-8449.

    90. [90]

      TANG L Y, HUANG Y Y, LIN C Y, QIU B, GUO L H, LUO, LIN Z Y. Talanta, 2020, 214:120862.

    91. [91]

      WANG A, MA X M, YE Y Z, LUO F, GUO L H, QIU B, LIN Z Y, CHEN G N. Anal. Chem., 2018, 90(2):1087-1091.

    92. [92]

      LI Z X, TANG C X, HUANG D, QIN W J, LUO F, WANG J, GUO L H, QIU B, LIN Z Y. Anal. Chem., 2019, 91(18):11821-11826.

    93. [93]

      HUANG Y Y, LIN C Y, LUO F, QIU B, GUO L H, LIN Z Y, CHEN G N. ACS Sens., 2019, 4(9):2465-2470.

    94. [94]

      GEROLD C T, BAKKER E, HENRY C S. Anal. Chem., 2018, 90(7):4894-4900.

    95. [95]

      ZHANG Y, XU J, ZHOU S, ZHU L, LV X, ZHANG J, ZHANG L, ZHU P, YU J. Anal. Chem., 2020, 92(5):3874-3881.

    96. [96]

      CATE D M, NOBLITT S D, VOLCKENS J, HENRY C S. Lab Chip, 2015, 15:2808-2818.

    97. [97]

      TIAN T, AN Y, WU Y, SONG Y L, ZHU Z, YANG C Y. ACS Appl. Mater. Interfaces, 2017, 9(36):30480-30487.

    98. [98]

      CHEN C, ZHAO L T, ZHANG H, SHEN X S, ZHU Y, CHEN H Y. Anal. Chem., 2019, 91(8):5169-5175.

    99. [99]

      WAN J. Chem. Rev., 2008, 108(2):814-825.

    100. [100]

      HELLER A, FELDMAN B. Chem. Rev., 2008, 108(7):2482-2505.

    101. [101]

      XIANG Y, LU Y. Nat. Chem., 2011, 3:697-703.

    102. [102]

      XIANG Y, LU Y. Anal. Chem., 2012, 84(9):4174-4178.

    103. [103]

      XIANG Y, LAN T, LU Y. J. Diabetes Sci. Technol., 2014, 8:855-858.

    104. [104]

      XIANG Y, LU Y. Chem. Commun., 2013, 49:585-587.

    105. [105]

      XIANG Y, LU Y. Anal. Chem., 2012, 84(4):1975-1980.

    106. [106]

      GU Y, ZHANG T T, HUANG Z F, HU S W, ZHAO W, XU J J, CHEN H Y. Chem. Sci., 2018, 9:3517-3522.

    107. [107]

      GU C M, LAN T, SHI H C, LU Y. Anal. Chem., 2015, 87(15):7676-7682.

    108. [108]

      KWON D, JOO J, LEE S, JEON S. Anal. Chem., 2013, 85(24):12134-12137.

    109. [109]

      MANOCHEHRY S, MCCONNELL E M, TRAM K Q, MACRI J, LI Y F. Front. Chem., 2018, 6:332.

    110. [110]

      ZHAO M M, WANG P L, GUO Y J, WANG L X, LUO F, QIU B, GUO L H, SU X O, LIN Z Y, CHEN G N. Talanta, 2018, 176:34-39.

    111. [111]

      WANG L X, CHEN C Q, HUANG H W, HUANG D, LUO F, QIU B, GUO L H, LIN Z Y, YANG H H. Biosens. Bioelectron., 2018, 121:153-158.

  • 加载中
计量
  • PDF下载量:  1
  • 文章访问数:  20
  • HTML全文浏览量:  4
文章相关
  • 收稿日期:  2020-06-14
  • 修回日期:  2020-09-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章