双链特异性核酸切割酶等温循环扩增结合高效液相色谱高灵敏检测双目标microRNA

祁桐 宋畅 陈文慧 唐良秀 鞠嘉和 沈薇 孔德昭 唐盛

引用本文: 祁桐, 宋畅, 陈文慧, 唐良秀, 鞠嘉和, 沈薇, 孔德昭, 唐盛. 双链特异性核酸切割酶等温循环扩增结合高效液相色谱高灵敏检测双目标microRNA[J]. 分析化学, 2021, 49(2): 216-225. doi: 10.19756/j.issn.0253-3820.201298 shu
Citation:  QI Tong,  SONG Chang,  CHEN Wen-Hui,  TANG Liang-Xiu,  JU Jia-He,  SHEN Wei,  KONG De-Zhao,  TANG Sheng. Duplex Specific Nuclease-Enabled Isothermal Signal Amplification Combined with High-Performance Liquid Chromatography for Highly Sensitive Detection of Dual-Target MicroRNAs as Disease Biomarkers[J]. Chinese Journal of Analytical Chemistry, 2021, 49(2): 216-225. doi: 10.19756/j.issn.0253-3820.201298 shu

双链特异性核酸切割酶等温循环扩增结合高效液相色谱高灵敏检测双目标microRNA

    通讯作者: 唐盛,E-mail:tangsheng.nju@gmail.com
  • 基金项目:

    国家自然科学基金项目(Nos.21605105,21705060)、江苏省自然科学基金项目(No.BK20170570)和江苏省六大人才高峰项目(No.SWYY-021)资助。

摘要: 通过双链特异性核酸切割酶(DSN)循环扩增策略结合高效液相色谱(HPLC)法,实现了对两种疾病标志物microRNA(miRNA)的选择性分离和高灵敏检测。采用酶循环等温扩增策略增强了目标miRNA的信号,提高了HPLC法检测核酸的灵敏度。利用固定在磁珠上的不同长度和碱基序列的DNA探针实现了不同miRNA信号的色谱分离,磁性分离使背景噪音最小化,动态范围扩大。对目标miRNA-155的检出限为0.30 fmol/L,对miRNA-21的检出限为0.24 fmol/L。将本方法用于检测红斑狼疮、宫颈癌和卵巢癌血清样本中的miRNA-155和miRNA-21,结果与实时荧光定量聚合酶链式反应(qRT-PCR)结果相当。

English


    1. [1]

      RYOO S R, LEE J, YEO J, NA H K, KIM Y K, JANG H, LEE J H, SANG W H, LEE Y, KIM V N. ACS Nano, 2013, 7(7):5882-5891.

    2. [2]

      LI N, HAO X, KANG B H, XU Z, SHI Y, LI N B, LUO H Q. Biosens. Bioelectron., 2016, 77:525-529.

    3. [3]

      MANDIANNASSER M, KARAMI Z. Biosens. Bioelectron., 2018, 107:123-144.

    4. [4]

      YOKOI A, MATSUZAKI J, YAMAMOTO Y, YONEOKA Y, TAKAHASHI K, SHIMIZU H, UEHARA T, ISHIKAWA M, IKEDA S, SONODA T, KAWAUCHI J, TAKIZAWA S, AOKI Y, NⅡDA S, SAKAMOTO H, KATO K, KATO T, OCHIYA T. Nat. Commun., 2018, 9:4319.

    5. [5]

      AZZOUZI S, MAK W C, KOR K, TURNER A P F, ALI M B, BENI V. Biosens. Bioelectron., 2017, 92:154-161.

    6. [6]

      GONG C, YAO Y, WANG Y, LIU B, WU W, CHEN J, SU F, YAO H, SONG E. J. Biol. Chem., 2011, 286(21):19127-19137.

    7. [7]

      HE X, ZENG T, LI Z, WANG G, MA N. Angew. Chem. Int. Ed., 2016, 55(9):3073-3076.

    8. [8]

      WU H, LIU Y, WANG H, WU J, ZHU F, ZOU P. Biosens. Bioelectron., 2016, 81:303-308.

    9. [9]

      KUMARSWAMY R, VOLKMANN I, THUM T. RNA Biol., 2011, 8(5):706-713.

    10. [10]

      BOLGER G, MICHAELI T, MARTINS T, ST JOHN T, STEINER B, RODGERS L, RIGGS M, WIGLER M, FERGUSON K. Mol. Cell. Biol., 1993, 13(10):6558-6571.

    11. [11]

      TANG S, LI Y, ZHU A, YAO Y, SUN J, ZHENG F, LIN Z, SHEN W. Chem. Commun., 2019, 55(58):8386-8389.

    12. [12]

      SUN J, LI Y, CHEN C, QI T, XIA D, MAO W, YANG T, CHEN L, SHEN W, TANG S. Talanta, 2018, 187:265-271.

    13. [13]

      TIAN W M, LI P J, HE W L, LIU C H, LI Z P. Biosens. Bioelectron., 2019, 128:17-22.

    14. [14]

      YIN B C, LIU Y Q, YE B C. J. Am. Chem. Soc., 2012, 134(11):5064-5067.

    15. [15]

      ZHANG J, WU D, CHEN Q, CHEN M, XIA Y, CAI S, ZHANG X, WU F, CHEN J. Analyst, 2015, 140(15):5082-5089.

    16. [16]

      SHAGIN D A, REBRIKOV D V, KOZHEMYAKO V B, ALTSHULER I M, SHCHEGLOV A S, ZHULIDOV P A, BOGDANOVA E A, STAROVEROV D B, RASSKAZOV V A, LUKYANOV S. Genome Res., 2002, 12(12):1935-1942.

    17. [17]

      KUANG Y, CAO J, XU F, CHEN Y. Anal. Chem., 2019, 91(14):8820-8826.

    18. [18]

      JIE G, ZHAO Y, WANG X, DING C. Sens. Actuators B, 2017, 252:1026-1034.

    19. [19]

      YU Bei, CHEN Shi-Jie, XU Tian-Xiong, ZHAN Zhong-Xu, LAI Wei-Hua, XU Heng-Yi. J. Instrum. Anal., 2018, 37(12):121-127. 俞蓓, 陈时建, 徐天雄, 占忠旭, 赖卫华, 许恒毅. 分析测试学报, 2018, 37(12):121-127.

    20. [20]

      LV Cui, KANG Tian-Fang, LU Li-Ping, XIONG Yue. Chin. J. Anal. Chem., 2012, 40(12):1822-1826. 吕翠, 康天放, 鲁理平, 熊岳. 分析化学, 2012, 40(12):1822-1826.

    21. [21]

      YE S, LI X, WANG M, TANG B. Anal. Chem., 2017, 89(9):5124-5130.

    22. [22]

      ZHAO Ying-Lian, MOU De-Hua, LI Yan. J. Food Sci., 2015, 36(6):178-182. 赵英莲, 牟德华, 李艳. 食品科学, 2015, 36(6):178-182.

    23. [23]

      DU Yuan-Qi, XIAO Xiao-Hua, LI Gong-Ke. Chin. J. Chromatogr., 2018, 36(7):579-587. 杜苑琪, 肖小华, 李攻科. 色谱, 2018, 36(7):579-587.

    24. [24]

      TANG S, SUN J, XIA D S, ZANG B, GAO Y H, CHEN C X, SHEN W, LEE H K. Talanta, 2019, 195:165-172.

    25. [25]

      NAKAYAMA H, YAMAUCHI Y, TAOKA M, ISOBE T. Anal. Chem., 2015, 87(5):2884-2891.

    26. [26]

      XU F, ZHOU W, CAO J, XU Q, JIANG D, CHEN Y. Theranostics, 2017, 7(11):2849-2862.

    27. [27]

      SHEN W, LI Y N, QI T, WANG S, SUN J, DENG H, LU H, CHEN C, CHEN L, TANG S. Microchim. Acta, 2018, 185(10):447-454.

    28. [28]

      SHEN W, YEO K H, GAO Z. Analyst, 2015, 140(6):1932-1938.

    29. [29]

      QIAO J Q, LIANG C, WEI L C, CAO Z M, LIAN H Z. J. Sep. Sci., 2016, 39(23):4502-4511.

    30. [30]

      LEE D P, KINDSVATER J H. Anal. Chem., 1980, 52(14):2425-2428.

    31. [31]

      HUBER C G, OEFNER P J, BONN G K. J. Chromatogr. A, 1992, 599:113-118.

    32. [32]

      LIN X, ZHANG C, HUANG Y, ZHU Z, CHEN X, YANG C J. Chem. Commun., 2013, 49(65):7243-7245.

    33. [33]

      TU Y Q, WU P, ZHANG H, CAI C X. Chem. Commun., 2012, 48(87):10718-10720.

    34. [34]

      ANISIMOVA V E, REBRIKOV D V, SHAGIN D A, KOZHEMYAKO V B, MENZOROVA N I, STAROVEROV D B, ZIGANSHIN R, VAGNER L L, RASSKAZOV V A, LUKYANOV S A. BMC Biochem., 2008, 9(1):1-12.

    35. [35]

      CHRISTODOULOU D C, GORHAM J M, HERMAN D S, SEIDMAN J G. Curr. Protoc. Mol. Biol., 2011, 94:1-11.

    36. [36]

      YUAN Y, MA Y, LUO L, WANG Q, HUANG J, LIU J, YANG X, WANG K. Microchim. Acta, 2019, 186(9):613-618.

  • 加载中
计量
  • PDF下载量:  13
  • 文章访问数:  746
  • HTML全文浏览量:  103
文章相关
  • 收稿日期:  2020-05-24
  • 修回日期:  2020-11-13
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章