基于聚集诱导发光分子的免标记癌胚抗原生物传感新方法研究

李海银 常加富 吕文欣 李峰

引用本文: 李海银,  常加富,  吕文欣,  李峰. 基于聚集诱导发光分子的免标记癌胚抗原生物传感新方法研究[J]. 分析化学, 2020, 48(10): 1325-1333. doi: 10.19756/j.issn.0253-3820.201295 shu
Citation:  LI Hai-Yin,  CHANG Jia-Fu,  LYU Wen-Xin,  LI Feng. Aggregation Induced Emission Fluorogen-based Label-free Biosensor for Highly Sensitive Detection of Carcinoembryonic Antigen[J]. Chinese Journal of Analytical Chemistry, 2020, 48(10): 1325-1333. doi: 10.19756/j.issn.0253-3820.201295 shu

基于聚集诱导发光分子的免标记癌胚抗原生物传感新方法研究

  • 基金项目:

    本文系国家自然科学基金项目(Nos.21605093,21775082)资助

摘要: 基于目标物诱导酶循环放大反应,借助Hemin/G-四链体对L-半胱氨酸(L-Cys)的催化氧化作用,构建了聚集诱导发光(AIE)分子介导的荧光生物传感器,实现了癌胚抗原(CEA)的免标记、高灵敏检测。以弱发光的马来酰亚胺功能化四苯乙烯(TPE-M)作为信号源,其可与L-Cys反应,使荧光增强。当目标物存在时,CEA引发聚合酶/内切酶辅助的循环放大反应,原位生成大量Hemin/G-四链体,其催化氧化L-Cys变成胱氨酸(Cys-cys),阻止L-Cys与TPE-M反应,致使传感体系的荧光强度降低;当CEA不存在时,L-Cys可继续与TPE-M反应,体系荧光信号增强。基于体系中荧光信号的变化,即可实现CEA的免标记、高灵敏检测,检出限为0.033 fmol/L。本传感器具有优异的选择性、稳定性与抗干扰能力,为生物样品中CEA的灵敏与准确检测提供了新方法。

English


    1. [1]

      Qiu Z, Shu J, Liu J, Tang D. Anal. Chem., 2019, 91(2):1260-1268

    2. [2]

      HAN Yu-Ping, CHEN Lin, LI Zhen, HU Cheng-Guo, LIU Zhi-Hong. Chinese J. Anal. Chem., 2018, 46(8):1178-1185 韩玉平, 谌林, 李贞, 胡成国, 刘志洪. 分析化学, 2018, 46(8):1178-1185

    3. [3]

      Su S, Li J, Yao Y, Sun Q, Zhao Q, Wang F, Li Q, Liu X G, Wang L H. ACS Appl. Bio. Mater., 2019, 2(1):292-298

    4. [4]

      Xiao L P, Zhu A M, Xu Q C, Chen Y, Xu J, Weng J. ACS Appl. Mater. Interfaces, 2017, 9(8):6931-6940

    5. [5]

      Liu F R, Cao J T, Wang Y L, Fu X L, Ren S W, Liu Y M. Sens. Actuators B, 2018, 276(10):173-179

    6. [6]

      Yang N, Huang Y X, Ding G S, Fan A P. Anal. Chem., 2019, 91(7):4906-4912

    7. [7]

      Zhao L J, Cheng M, Liu G N, Lu H Y, Gao Y, Yan X, Liu F M, Sun P, Lu G Y. Sens. Actuators B, 2018, 273(10):185-190

    8. [8]

      Jie G F, Li C L, Zhao Y, Kuang Q, Niu S Y. ACS Appl. Nano Mater., 2019, 2(7):4637-4645

    9. [9]

      Jia Y L, Li Y Y, Zhang S A, Wang P, Liu Q, Dong Y H. Biosens. Bioelectron., 2020, 149(1):111842

    10. [10]

      Ge L, Wang W X, Sun X M, Hou T, Li F. Anal. Chem., 2016, 88(4):2212-2219

    11. [11]

      Lin X L, Wang Y Y, Wang L N, Lu Y D, Li J, Lu D C, Zhou T, Huang Z F, Huang J, Huang H F, Qiu S F, Chen R, Lin D, Feng S Y. Biosens. Bioelectron., 2019, 143(15):111599

    12. [12]

      Bai X R, Wang L H, Ren J Q, Bai X W, Zeng L W, Shen A G, Hu J M. Anal. Chem., 2019, 91(4):2955-2963

    13. [13]

      Yang X, Zhuo Y, Zhu S, Luo Y, Feng Y, Xu Y. Biosens. Bioelectron., 2015, 64:345-351

    14. [14]

      Hai X M, Li N, Wang K, Zhang Z Q, Zhang J, Dang F Q. Anal. Chim. Acta, 2018, 998:60-66

    15. [15]

      Qian R C, Cao Y, Zhao L J, Gu Z, Long Y T. Angew. Chem. Int. Ed., 2017, 56(17):4802-4805

    16. [16]

      Liu Q Y, Chen P P, Xu Z, Chen M M, Ding Y N, Yue K, Xu J. Sens. Actuators B, 2017, 251:339-348

    17. [17]

      Tzouvadaki I, Jolly P, Lu X L, Ingebrandt S, de Micheli G, Estrela P, Carrara S. Nano Lett., 2016, 16(7):4472-4476

    18. [18]

      Jie G, Li C, Zhao Y, Kuang Q, Niu S. ACS Appl. Nano Mater., 2019, 2(7):4637-4645

    19. [19]

      Miao H, Wang L, Zhuo Y, Zhou Z, Yang X. Biosens. Bioelectron., 2016, 86:83-89

    20. [20]

      Huang W, Hu G B, Yao L Y, Yang Y, Liang W B, Yuan R, Xiao D R. Anal. Chem., 2020, 92(4):3380-3387

    21. [21]

      Li J, Kwon N, Jeong Y, Lee S, Kim G, Yoon J. ACS Appl. Mater. Interfaces, 2018, 10(15):12150-12154

    22. [22]

      Wu P, Wang X F, Wang Z G, Ma W, Guo J S, Chen J J, Yu Z Q, Li J Z, Zhou D F. ACS Appl. Mater. Interfaces, 2019, 11(20):18691-18700

    23. [23]

      Li H Y, Lin H Y, Lv W X, Gai P P, Li F. Biosens. Bioelectron., 2020, 165:112336

    24. [24]

      Lu D, He L, Wang Y, Xiong M, Hu M, Liang H, Huan S, Zhang X B, Tan W. Talanta, 2017, 167:550-556

    25. [25]

      Zhuang Y, Huang F J, Xu Q, Zhang M S, Lou X D, Xia F. Anal. Chem., 2016, 88(6):3289-3294

    26. [26]

      Chang J F, Li H Y, Hou T, Duan W N, Li F. Biosens. Bioelectron., 2018, 104(1):152-157

    27. [27]

      Chang J F, Li H Y, Hou T, Li F. Biosens. Bioelectron., 2016, 86(15):971-977

    28. [28]

      Li H Y, Chang J F, Gai P P, Li F. ACS Appl. Mater. Interfaces, 2018, 10(5):4561-4568

    29. [29]

      Zhou Y C, Ran X X, Chen A Y, Chai Y Q, Yuan R, Zhuo Y. Anal. Chem., 2018, 90(15):9109-9116

    30. [30]

      Shen P, Li W, Liu Y, Ding Z, Deng Y, Zhu X, Jin Y, Li Y, Li J, Zheng T. Anal. Chem., 2017, 89(21):11862-11868

    31. [31]

      Ren K W, Wu J, Ju H X, Yan F. Anal. Chem., 2015, 87(3):1694-1700

    32. [32]

      Zhou J, Lai W Q, Zhuang J Y, Tang J, Tang D P. ACS Appl. Mater. Interfaces, 2013, 5(7):2773-2781

    33. [33]

      Zong C, Wu J, Liu M M, Yang L L, Yan F, Ju H X. Anal. Chem., 2014, 86(19):9939-9944

    34. [34]

      Xu J, Wu J, Zong C, Ju H X, Yan F. Anal. Chem., 2013, 85(6):3374-3379

    35. [35]

      Lin Z Y, Zhang G Y, Yang W Q, Qiu B, Chen G N. Chem. Commun., 2012, 48(79):9918-9920

    36. [36]

      Hu M, He Y, Song S P, Yan J, Lu H T, Weng L X, Wang L H, Fan C H. Chem. Commun., 2010, 46(33):6126-6128

  • 加载中
计量
  • PDF下载量:  6
  • 文章访问数:  990
  • HTML全文浏览量:  71
文章相关
  • 收稿日期:  2020-05-22
  • 修回日期:  2020-07-02
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章