基于Taqman微流控芯片技术高通量检测17种转基因玉米品系

徐君怡 曹际娟 郑秋月 杨莉莉 王永 邹明强

引用本文: 徐君怡, 曹际娟, 郑秋月, 杨莉莉, 王永, 邹明强. 基于Taqman微流控芯片技术高通量检测17种转基因玉米品系[J]. 分析化学, 2020, 48(11): 1477-1485. doi: 10.19756/j.issn.0253-3820.201287 shu
Citation:  XU Jun-Yi,  CAO Ji-Juan,  ZHENG Qiu-Yue,  YANG Li-Li,  WANG Yong,  ZOU Ming-Qiang. High-throughput Identification and Detection of 17 Transgenic Maize Events Based on Taqman Microfluidic Chip Technology[J]. Chinese Journal of Analytical Chemistry, 2020, 48(11): 1477-1485. doi: 10.19756/j.issn.0253-3820.201287 shu

基于Taqman微流控芯片技术高通量检测17种转基因玉米品系

    通讯作者: 曹际娟,caojijuan@dlnu.edu.cn
  • 基金项目:

    本文系国家转基因生物新品种培育专项课题(No.2018ZX08012-001)资助

摘要: 将Taqman微流控芯片技术应用于实时荧光PCR平台的转基因玉米17种品系高通量检测。在一次PCR扩增过程中,以2个玉米内源基因(hmgA基因、adh1基因)和1个上样控制基因(18S基因)为内参照,可同时完成17种转基因玉米品系(TC1507、NK603、MON87640、MON863、MON810、MIR162、GA21、DAS40278、BT176、BT11、98140、59122、3272、MON89034、MIR604、MON88017、T25)的单孔单重扩增的并行检测,检出限可达10~20 copies。本方法特异性强,灵敏度高,与"金标准"单一的实时荧光PCR方法检测结果完全吻合,具有可多样品、多靶标平行检测的优势,为转基因产品多品系混杂鉴定检测提供了高效、快速的方法。采用本方法,从16批进境的实用玉米中检出9批转基因玉米样品,且发现其中不同程度的混杂含有1~8种品系。本方法可用于口岸进境实用农产品中多品系混杂转基因的高通量检测。

English


    1. [1]

      Brookes G, Barfoot P. ISAAA Brief No. 36. ISAAA:Ithaca, NY.2006

    2. [2]

      Pearsall D. GM Crops Food,2013,4(3):143-150

    3. [3]

      James C. ISAAA Brief No.54. ISAAA:Ithaca, NY.2018

    4. [4]

      Fresco L O. Science,2013,339(6122):883

    5. [5]

      HUANG Da-Fang. Chinese J. Biotech., 2015,31(6):892-900 黄大昉.生物工程学报, 2015,31(6):892-900

    6. [6]

      GM Approval Database/GM Crops List/Maize (Zea mays L.) GM Events. www.isaaa.org/gmapprovaldatabase/crop/default.asp?CropID=6&Crop=Maize

    7. [7]

      Demeke T, Dobnik D. Anal. Bioanal. Chem.,2018,410(17):4039-4050

    8. [8]

      Holst-Jensen A, Bertheau Y, de Loose M, Grohmann L, Hamels S, Hougs L, Morisset D, Pecoraro S, Pla M, Bulcke M V, Wulff D. Biotechnol. Adv.,2012,30(6):1318-1335

    9. [9]

      Miraglia M, Berdal K G, Brera C, Corbisier P, Holst-Jensen A, Kok E J, Marvin H J P, Schimmel H, Rentsch J, van Rie J P P F, Zagon J. Food Chem. Toxicol.,2004,42(7):1157-1180

    10. [10]

      Zhang D B, Guo J C. Integr. Plant Biol.,2011,53(7):539-551

    11. [11]

      Waiblinger H U, Ernst B, Anderson A, Pietsch K. Food Res. Technol.,2008,226:1221-1228

    12. [12]

      Takabatake R, Koiwa T, Kasahara M, Takashima K, Futo S, Minegishi Y, Akiyama H, Teshima R, Oguchi T, Mano J, Furui S, Kitta K. Food Hyg. Safe Sci.,2011,52:265-269

    13. [13]

      Huber I, Block A, Sebah D, Debode F, Morisset D, Grohmann L, Berben G, Stebih D, Milavec M, Zel J, Busch U. J. Agric. Food Chem.,2013,61:10293-10301

    14. [14]

      Manz A, Fettinger J C, Verpoorte E, Luedi H, Widmer H, Harrison D J. TrAC-Trends Anal. Chem.,1991,10 (5):144-149

    15. [15]

      LIN Dong-Guo, LIN Jin-Qiong, LI Pei-Wen, YANG Na, XU Bang-Lao, LIU Da-Yu. Chinese J. Anal. Chem.,2018,46(1):113-120 林冬果, 林锦琼, 李佩文, 杨娜, 徐邦牢, 刘大渔.分析化学,2018,46(1):113-120

    16. [16]

      Park S, Zhang Y, Lin S, Wang T H, Yang S. Biotechnol. Adv.,2011,29(6):830-839

    17. [17]

      LIAO Ze-Rong, LI Yong-Rui, GU Le, LEI Run-Hong, MIAO Yun-Fei, LAN Hong-Ying, DENG Yu-Lin, GENG LI-Na. Chinese Journal of Chromatography,2019,37(4):343-347 廖泽荣, 李永瑞, 古乐, 雷润宏, 苗云飞, 蓝鸿颖, 邓玉林, 耿利娜.色谱,2019,37(4):343-347

    18. [18]

      Liu D Y, Liang G T, Zhang Q, Chen B. Anal. Chem.,2013,85(9):4698-4704

    19. [19]

      JIANG Hao, LYU Xue-Fei, ZHAO Ke-Xin. Chinese J. Anal. Chem.,2020,48(5):590-600 姜浩, 吕雪飞, 赵可心.分析化学,2020,48(5):590-600

    20. [20]

      HE Hao-Yan, HUANG En-Qi, LI Zhu-Jun, SHU Bo-Wen, XU Bang-Lao, LIU Da-Yu. Chinese J. Anal. Chem.,2020,48(7):855-862 何浩延, 黄恩奇, 黎柱均, 舒博文, 徐邦牢, 刘大渔.分析化学, 2020,48(7):855-862

    21. [21]

      ZHOU Jie, HUANG Wen-Sheng, DENG Ting-Ting, CHEN Ying, LI Min, OUYANG Zhao-Huai, WU Ya-Jun, WANG Yong-Gui. Chinese J. Modern Food Science and Technology,2017,33(6):293-302 周杰, 黄文胜, 邓婷婷, 陈颖, 李敏, 欧阳兆槐, 吴亚君, 王永贵.现代食品科技, 2017,33(6):293-302

    22. [22]

      Qin K, Lv X, Xing Q, Li R, Deng Y. Anal. Methods,2016,8(12):2584-2591

    23. [23]

      Xu J, Lv X, Wei Y, Zhang L, Li R, Deng Y, Xu X. Sens. Actuators B,2015,212:472-480

    24. [24]

      Khandurina J, Guttman A. J. Chromatogr. A,2002,943(2):159-183

    25. [25]

      Kodani M, Yang G, Conklin L M, Travis T C, Whitney C G, Anderson L J, Schrag S J, Taylor T H, Beall B W, Breiman R F, Feikin D R, Njenga M K, MayerL W, Oberste M S, Tondella M L C, Winchell J M, Lindstrom S L, Erdman D D, Fields B S. J. Clin. Microbiol.,2011, 49(6):2175-2182

    26. [26]

      Liu J, Gratz J, Amour C, Kibiki G, Becker S, Janaki L, Verweij J J, Taniuchi M, Sobuz S U, Haque R, Haverstick D M, Houpt E R. J. Clin. Microbiol.,2013:51(2):472-480

    27. [27]

      Rachwal P A, Rose H L, Cox V, Lukaszewski R A, Murch A L, Weller S A. PLoS One,2012, 7(4):e35971

    28. [28]

      GB/T 19495.7-2004, Detection of Genetically Modified Organisms and Derived Products-Methods for Sampling and Sample Preparation. National Standards of the People's Republic of China 转基因产品检测抽样和制样方法.中华人民共和国国家标准. GB/T 19495.7-2004

    29. [29]

      GB/T 19495.5-2018, Detection of Genetically Modified Organisms and Derived Products-Quantitative Real-Time Polymerase Chain Reaction (PCR) Methods. National Standards of the People's Republic of China 转基因产品检测实时荧光定量聚合酶链式反应(PCR)检测方法.中华人民共和国国家标准. GB/T 19495.5-2018

    30. [30]

      30 SN/T 1196-2018, Genetically Modified Components Detection Methods for Maize. Industry Standard of Entry Exit Inspection and Quarantine of the People's Republic of China 转基因成分检测玉米检测方法.中华人民共和国出入境检验检疫行业标准. SN/T 1196-2018

    31. [31]

      European Network of GMO Laboratories (ENGL). Definition of Minimum Performance Requirements for Analytical Methods of GMO Testing, 2015. European Union Reference Laboratory for GM Food and Feed

  • 加载中
计量
  • PDF下载量:  2
  • 文章访问数:  36
  • HTML全文浏览量:  4
文章相关
  • 收稿日期:  2020-05-09
  • 修回日期:  2020-09-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章