核酸适配体在质谱中的应用与展望

杨捷威 王晨钰 罗黎 郭磊 谢剑炜

引用本文: 杨捷威, 王晨钰, 罗黎, 郭磊, 谢剑炜. 核酸适配体在质谱中的应用与展望[J]. 分析化学, 2020, 48(11): 1439-1447. doi: 10.19756/j.issn.0253-3820.201285 shu
Citation:  YANG Jie-Wei,  WANG Chen-Yu,  LUO Li,  GUO Lei,  XIE Jian-Wei. Applications and Prospects of Oligonucleotide Aptamers in Mass Spectrometry[J]. Chinese Journal of Analytical Chemistry, 2020, 48(11): 1439-1447. doi: 10.19756/j.issn.0253-3820.201285 shu

核酸适配体在质谱中的应用与展望

    通讯作者: 郭磊,guolei@bmi.ac.cn
  • 基金项目:

    本文系国家自然科学基金项目(No.21974152)资助

摘要: 核酸适配体(简称适配体)是一类重要的"化学抗体"型功能性生物分子,基于适配体的质谱技术在提供分子质量及结构特征等基础上,兼具了针对靶分子的高选择性及亲和富集特点,从而提供出高特异、高灵敏信息。本文综述了近年来适配体在质谱分析中的应用进展,重点评述了适配体在质谱分子相互作用表征中的应用、适配体作为离线型和在线亲和材料用于质谱分析测定等现状,其中结合多种质谱新技术,通过创建或结合多种前处理或在线一体化信号增强方式,特别是适配体功能化纳米材料的应用,在相互作用表征、痕量靶分子选择性提取和高灵敏检测等质谱分析测定方面是研究的重点。最后,本文对适配体在质谱研究中的应用前景进行了展望。

English


    1. [1]

      Röthlisberger P, Hollenstein M. Adv. Drug Deliv. Rev., 2018,134:3-21

    2. [2]

      Dunn M R, Jimenez R M, Chaput J C. Nat. Rev. Chem., 2017,1(10):0076

    3. [3]

      Golden M C, Resing K A, Collins B D, Willis M C, Koch T H. Protein Sci., 1999,8(12):2806-2812

    4. [4]

      Lu C, Tian S, Zhai G, Yuan Z, Li Y, He X, Zhang Y, Zhang K. ACS Chem. Biol., 2017,12(1):57-62

    5. [5]

      Keller K M, Breeden M M, Zhang J M, Ellington A D, Brodbelt J S. J. Mass Spectrom., 2005,40(10):1327-1337

    6. [6]

      Gulbakan B, Barylyuk K, Schneider P, Pillong M, Schneider G, Zenobi R. J. Am. Chem. Soc., 2018,140(24):7486-7497

    7. [7]

      Chen F, Gulbakan B, Zenobi R. Chem. Sci., 2013,4(10):4071-4078

    8. [8]

      Trelle M B, Dupont D M, Madsen J B, Andreasen P A, Jorgensen T J. ACS Chem. Biol., 2014,9(1):174-182

    9. [9]

      Zhang J, Loo R R O, Loo J A. J. Am. Soc. Mass Spectrom., 2017,28(9):1815-1822

    10. [10]

      Zhang Q, Yang Y, Zhi Y, Wang X, Wu Y, Zheng Y. J. Sep. Sci., 2019,42(3):716-724

    11. [11]

      Nguyen T H, Pei R J, Qiu C M, Ju J Y, Stojanovic M, Lin Q. J. Microelectromech. Syst., 2009,18(6):1198-1207

    12. [12]

      Ahn J Y, Lee S W, Kang H S, Jo M, Lee D K, Laurell T, Kim S. J. Proteome Res., 2010,9(11):5568-5573

    13. [13]

      Mu L, Hu X, Wen J, Zhou Q. J. Chromatogr. A, 2013,1279:7-12

    14. [14]

      Hashemian Z, Khayamian T, Saraji M. Anal. Bioanal. Chem., 2015,407(6):1615-1623

    15. [15]

      Shamsipur M, Farzin L, Amouzadeh Tabrizi M, Sheibani S. Mater. Sci. Eng. C, 2017,77:459-469

    16. [16]

      Lin S, Gan N, Cao Y, Chen Y, Jiang Q. J. Chromatogr. A, 2016,1446:34-40

    17. [17]

      Lin S, Gan N, Zhang J, Qiao L, Chen Y, Cao Y. Talanta, 2016,149:266-274

    18. [18]

      Zeng J, Wang Q, Gao J, Wang W, Shen H, Cao Y, Hu M, Bi W, Gan N. J. Chromatogr. A, 2020:1614:460715

    19. [19]

      Zhang Q, Zhou Q, Yang L, Wang X, Zheng Y, Bao L. J. Sep. Sci., 2020,43(13):2610-2618

    20. [20]

      Cho S, Lee S H, Chung W J, Kim Y K, Lee Y S, Kim B G. Electrophoresis, 2004,25(21-22):3730-3739

    21. [21]

      Xiong Y, Deng C, Zhang X. Talanta, 2014,129:282-289

    22. [22]

      Ge K, Peng Y, Lu Z, Hu Y, Li G. J. Chromatogr. A, 2020,1615:460741

    23. [23]

      Yang J, Zhu J, Pei R, Oliver J A, Landry D W, Stojanovic M N, Lin Q. Anal. Methods, 2016,8(26):5190-5196

    24. [24]

      Xiong Y, Deng C, Zhang X, Yang P. ACS Appl. Mater. Interfaces, 2015,7(16):8451-8456

    25. [25]

      Wang Z, Hu X, Sun N, Deng C. Anal. Chim. Acta, 2019,1087:69-75

    26. [26]

      Chen Y, Jiang B, Hu Y, Deng N, Zhao B, Li X, Liang Z, Zhang L, Zhang Y. Electrophoresis, 2019,40(16-17):2135-2141

    27. [27]

      Lupu L, Wiegand P, Huettmann N, Rawer S, Kleinekofort W, Shugureva I, Kichkailo A S, Tomilin F N, Lazarev A, Berezovski M V, Przybylski M. ChemMedChem, 2020,15(4):363-369

    28. [28]

      Berezovski M V, Lechmann M, Musheev M U, Mak T W, Krylov S N. J. Am. Chem. Soc., 2008,130(28):9137-9143

    29. [29]

      Gold L, Ayers D, Bertino J, Bock C, Bock A, Brody E N, Carter J, Dalby A B, Eaton B E, Fitzwater T, Flather D, Forbes A, Foreman T, Fowler C, Gawande B, Goss M, Gunn M, Gupta S, Halladay D, Heil J, Heilig J, Hicke B, Husar G, Janjic N, Jarvis T, Jennings S, Katilius E, Keeney T R, Kim N, Koch T H, Kraemer S, Kroiss L, Le N, Levine D, Lindsey W, Lollo B, Mayfield W, Mehan M, Mehler R, Nelson S K, Nelson M, Nieuwlandt D, Nikrad M, Ochsner U, Ostroff R M, Otis M, Parker T, Pietrasiewicz S, Resnicow D I, Rohloff J, Sanders G, Sattin S, Schneider D, Singer B, Stanton M, Sterkel A, Stewart A, Stratford S, Vaught J D, Vrkljan M, Walker J J, Watrobka M, Waugh S, Weiss A, Wilcox S K, WolfsonA, Wolk S K, Zhang C, Zichi D. PLoS One, 2010,5(12):e15004

    30. [30]

      Hathout Y, Brody E, Clemens P R, Cripe L, Delisle R K, Furlong P, Gordish-Dressman H, Hache L, Henricson E, Hoffman E P, Kobayashi Y M, Lorts A, Mah J K, Mcdonald C, Mehler B, Nelson S, Nikrad M, Singer B, Steele F, Sterling D, Sweeney H L, Williams S, Gold L. Proc. Natl. Acad. Sci. USA, 2015,112(23):7153-7158

    31. [31]

      Billing A M, Ben Hamidane H, Bhagwat A M, Cotton R J, Dib S S, Kumar P, Hayat S, Goswami N, Suhre K, Rafii A, Graumann J. J. Proteomics, 2017,150:86-97

    32. [32]

      Finkernagel F, Reinartz S, Schuldner M, Malz A, Jansen J M, Wagner U, Worzfeld T, Graumann J, Von Strandmann E P, Mueller R. Theranostics, 2019,9(22):6601-6617

    33. [33]

      Jacob J, Ngo D, Finkel N, Pitts R, Gleim S, Benson M D, Keyes M J, Farrell L A, Morgan T, Jennings L L, Gerszten R E. Circulation, 2018,137(12):1270-1277

    34. [34]

      Shubin N J, Navalkar K, Sampson D, Yager T D, Cermelli S, Seldon T, Sullivan E, Zimmerman J J, Permut L C, Piliponsky A M. Crit. Care Med., 2020,48(1):E48-E57

    35. [35]

      Ahmad R, Jang H, Batule B S, Park H G. Anal. Chem., 2017,89(17):8966-8973

    36. [36]

      Yang W J, Xi Z M, Zeng X X, Fang L, Jiang W J, Wu Y N, Xu L J, Fu F F. J. Anal. At. Spectrom., 2016,31(3):679-685

    37. [37]

      Yang B, Chen B, He M, Yin X, Xu C, Hu B. Anal. Chem., 2018,90(3):2355-2361

    38. [38]

      Dick L W, Mcgown L B. Anal. Chem., 2004,76(11):3037-3041

    39. [39]

      Connor A C, Frederick K A, Morgan E J, Mcgown L B. J. Am. Chem. Soc., 2006,128(15):4986-4991

    40. [40]

      Cole J R, Dick L W, Morgan E J, Mcgown L B. Anal. Chem., 2007,79(1):273-279

    41. [41]

      Zhang X Y, Zhu S C, Deng C H, Zhang X M. Chem. Commun. (Camb.), 2012,48(21):2689-2691

    42. [42]

      Zhang X, Zhu S, Xiong Y, Deng C, Zhang X. Angew. Chem. Int. Ed., 2013,52(23):6055-6058

    43. [43]

      Lee S J, Adler B, Ekstrom S, Rezeli M, Vegvari A, Park J W, Malm J, Laurell T. Anal. Chem., 2014,86(15):7627-7634

    44. [44]

      Huang Y F, Chang H T. Anal. Chem., 2007,79(13):4852-4859

    45. [45]

      Gulbakan B, Yasun E, Shukoor M I, Zhu Z, You M, Tan X, Sanchez H, Powell D H, Dai H, Tan W. J. Am. Chem. Soc., 2010,132(49):17408-17410

    46. [46]

      Gan J, Wei X, Li Y, Wu J, Qian K, Liu B. Nanomedicine, 2015,11(7):1715-1723

    47. [47]

      Ma R, Lu M, Ding L, Ju H, Cai Z. Chem. Eur. J., 2013,19(1):102-108

    48. [48]

      Ocsoy I, Gulbakan B, Shukoor M I, Xiong X, Chen T, Powell D H, Tan W. ACS Nano, 2013,7(1):417-427

    49. [49]

      Liu Y C, Chang H T, Chiang C K, Huang C C. ACS Appl. Mater. Interfaces, 2012,4(10):5241-5248

    50. [50]

      Chiu W J, Ling T K, Chiang H P, Lin H J, Huang C C. ACS Appl. Mater. Interfaces, 2015,7(16):8622-8630

    51. [51]

      Huang R C, Chiu W J, Lai P J, Huang C C. Sci. Rep., 2015,5:10292

    52. [52]

      Tseng Y T, Harroun S G, Wu C W, Mao J Y, Chang H T, Huang C C. Nanotheranostics, 2017,1(2):141-153

    53. [53]

      Han J, Li Y, Zhan L, Xue J, Sun J, Xiong C, Nie Z. Chem. Commun. (Camb.), 2018,54(76):10726-10729

    54. [54]

      Zhu L, Han J, Wang Z, Yin L, Zhang W, Peng Y, Nie Z. Analyst, 2019,144(22):6641-6646

    55. [55]

      Zargar T, Khayamian T, Jafari M T. J. Pharm. Biomed. Anal., 2017,132:232-237

    56. [56]

      Zargar T, Khayamian T, Jafari M T. Microchim. Acta, 2018,185(2):103

    57. [57]

      Mironov G G, Bouzekri A, Watson J, Loboda O, Ornatsky O, Berezovski M V. Anal. Bioanal. Chem., 2018,410(13):3047-3051

    58. [58]

      Gan H, Xu H. Anal. Chim. Acta, 2018,1008:48-56

    59. [59]

      Gan H, Xu H. Talanta, 2019,201:271-279

    60. [60]

      Pero-Gascon R, Benavente F, Minic Z, Berezovski M V, Sanz-Nebot V. Anal. Chem., 2020,92(1):1525-1533

  • 加载中
计量
  • PDF下载量:  12
  • 文章访问数:  1064
  • HTML全文浏览量:  214
文章相关
  • 收稿日期:  2020-05-19
  • 修回日期:  2020-08-19
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章